In Vitro Metabolism by Aldehyde Oxidase Leads to Poor Pharmacokinetic Profile in Rats for c-Met Inhibitor MET401 was written by Zhang, Jiang Wei;Deng, Hai Bing;Zhang, Chun Ye;Dai, Jing Quan;Li, Qian;Zheng, Qian Gang;Wan, Hui Xin;Yu, Hong Ping;He, Feng;Xu, Yao Chang;Zhao, Sylvia;Zhang, Ji Yue Jeff. And the article was included in European Journal of Drug Metabolism and Pharmacokinetics in 2019.COA of Formula: C6H6N4 This article mentions the following:
MET401 is a potent and selective c-Met inhibitor with a novel triazolopyrimidine scaffold. The aim of this study was to determine the pharmacokinetic profile of MET401 in preclin. species, and to identify the metabolic soft spot and enzyme involved, in order to help medicinal chemists to modify the compound to improve the pharmacokinetic profile. A metabolite identification study was performed in different liver fractions from various species. Chem. inhibition with selective cytochrome P 450 (CYP) and molybdenum hydroxylase inhibitors was carried out to identify the enzyme involved. The deuterium substitution strategy was adopted to reduce metabolism Pharmacokinetic studies were performed in rats to confirm the effect. Although M-2 is a minor metabolite in liver microsomal incubations, it became the predominant metabolite in incubations with liver S9, cytosol, hepatocytes and rat pharmacokinetic study. M-2 was synthesized enzymically and the structure was identified as a mono-oxidation on the triazolopyrimidine moiety. The M-2 formation was ascribed to aldehyde oxidase (AO)-mediated metabolism based on the following evidence-M-2 production was NADPH independent, pan-CYP inhibitor 1-aminobenzotriazole and xanthine oxidase inhibitor allopurinol did not inhibit M-2 formation, and AO inhibitors menadione and raloxifene inhibited M-2 formation. The deuterated analog MET763 demonstrated an improved pharmacokinetic profile with lower clearance, longer terminal half-life and double oral exposure compared with MET401 in rats. These results indicate that the main metabolic pathway of MET401 is AO-mediated metabolism, which leads to poor in vivo pharmacokinetic profiles in rodents. The deuterium substitution strategy could be used to reduce AO-mediated metabolism liability. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6COA of Formula: C6H6N4).
1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA. Triazoles are compounds with a vast spectrum of applications, varying from materials (polymers), agricultural chemicals, pharmaceuticals, photoactive chemicals and dyes.COA of Formula: C6H6N4
Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics