《Fluorescent labeling of s2T-incorporated DNA and m5s2U-modified RNA》 was written by Yu, Ping; Zhou, Honglin; Li, Yuanyuan; Du, Zhifeng; Wang, Rui. SDS of cas: 510758-28-8This research focused ontranslation transcription RNA DNA duplex preparation fluorescent labeling nucleotide; Sulfur modification; alkylation; m5s2U; s2T; sulfur exchange. The article conveys some information:
We report herein comprehensive investigations of alkylation/sulfur exchange reactions of sulfur-containing substrates including nucleosides such as s2U, m5s2U, s4U, s2A and s2T-incorporated DNA enable by comprehensive screenings of the reagents (). It has been proven that iodoacetamide () displays the most promising feasibility toward sulfur-containing substrates including s2T, s2U, m5s2U, s4U and s2A. In sharp contrast, the alkylation process with S-benzyl methanethiosulfonate (BMTS) displays the best application potential only for s4U. Based on these results, the fluorescent labeling of s2T-incorporated DNA and m5s2U-modified RNA has been achieved. Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.1942044. After reading the article, we found that the author used Tris((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine(cas: 510758-28-8SDS of cas: 510758-28-8)
Tris((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine(cas: 510758-28-8) is a polytriazolylamine ligand which stabilizes Cu(I) towards disproportionation and oxidation thus enhancing its catalytic effect in the azide-acetylene cycloaddition.SDS of cas: 510758-28-8
Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics