Patkar, Kshitij A. et al. published their research in Amino Acids in 2009 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Related Products of 156311-83-0

Solid phase and solution synthesis of NvocLys(CO(CH2)5NH-NBD)OCH2CN, a trifunctional fluorescent lysine derivative was written by Patkar, Kshitij A.;Highsmith, W. Edward;Aldrich, Jane V.. And the article was included in Amino Acids in 2009.Related Products of 156311-83-0 The following contents are mentioned in the article:

Herein, the authors describe a general strategy for the facile synthesis of a multifunctional amino acid derivative bearing both fluorescent and photolabile groups such as the lysine derivative Nvoc-Lys[CO(CH2)5NHNBD]-OCH2CN (1) that can be used as a biophys. tool for studying protein structure. The synthetic strategy involves functionalization of the amine groups while the amino acid is attached to a solid support, followed by esterification of the carboxylic acid in solution The solid support protects the carboxylic acid, preventing a side reaction associated with the synthesis in solution and obviating the need for chromatog. purification of several intermediates. This synthetic strategy can be used for the preparation of a variety of amino acid derivatives with unusual α-amine and side chain functionalities. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Related Products of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Related Products of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Tran, Kristy et al. published their research in Journal of Organic Chemistry in 2015 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Computed Properties of C17H27F6N7OP2

Development of a Diastereoselective Phosphorylation of a Complex Nucleoside via Dynamic Kinetic Resolution was written by Tran, Kristy;Beutner, Gregory L.;Schmidt, Michael;Janey, Jacob;Chen, Ke;Rosso, Victor;Eastgate, Martin D.. And the article was included in Journal of Organic Chemistry in 2015.Computed Properties of C17H27F6N7OP2 The following contents are mentioned in the article:

The development of a diastereoselective nucleoside phosphorylation is described, which produces a single isomer of a complex nucleoside monophosphate prodrug. A stable phosphoramidic acid derivative is coupled to the nucleoside, in a process mediated by HATU and quinine, to deliver the coupled product in high chem. yield and good diastereoselectivity. This unusual process was shown to proceed through a dynamic kinetic resolution of a 1:1 mixture of activated phosphonate ester diastereoisomers. The optimized conditions afforded the product with a combined [S,S(P)] and [S,R(P)] in-process yield of 89% and a ∼ 7:1 [S,S(P):S,R(P)] diastereomeric ratio. Isolation of the major isomer was facilitated by single crystallization from anisole, where the product was obtained in 57% isolated yield, excellent purity (>95%), and a high diastereomeric ratio (>50:1). This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Computed Properties of C17H27F6N7OP2).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Computed Properties of C17H27F6N7OP2

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Subiros-Funosas, Ramon et al. published their research in Organic & Biomolecular Chemistry in 2010 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Related Products of 156311-83-0

PyOxP and PyOxB: the Oxyma-based novel family of phosphonium salts was written by Subiros-Funosas, Ramon;El-Faham, Ayman;Albericio, Fernando. And the article was included in Organic & Biomolecular Chemistry in 2010.Related Products of 156311-83-0 The following contents are mentioned in the article:

Recent studies described the great impact of a non-benzotriazolic family of coupling reagents based on Et 2-cyano-2-(hydroxyimino)acetate, Oxyma, as a powerful coupling methodol. for peptide synthesis. Here we present the synthesis and evaluation of the derived phosphonium salts O-[(1-cyano-2-ethoxy-2-oxoethylidene)amino]-oxytri(pyrrolidin-1-yl) phosphonium hexafluorophosphate (PyOxP) and tetrafluoroborate (PyOxB). Both coupling reagents exhibited higher capacity to suppress racemization in various peptide models and enhanced solubility in DMF and DCM than benzotriazole-based reagents. In addition, the hexafluorophosphate analog PyOxP, combined excellent stability with outstanding efficiency in the assembly of demanding penta and decapeptides that include consecutive Aib residues. Cyclization models revealed the advantages of PyOxP, which rendered a higher percentage of cyclic material than other known potent phosphonium salts. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Related Products of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Related Products of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Moreira, Ryan et al. published their research in Organic & Biomolecular Chemistry in 2021 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Both the triazoles and their derivatives have significant biological properties including antimicrobial, antiviral, antitubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory, and antidepressant activities.Recommanded Product: ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

A high-yielding solid-phase total synthesis of daptomycin using a Fmoc SPPS stable kynurenine synthon was written by Moreira, Ryan;Wolfe, Jacob;Taylor, Scott D.. And the article was included in Organic & Biomolecular Chemistry in 2021.Recommanded Product: ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) The following contents are mentioned in the article:

A high-yielding total synthesis of daptomycin, an important clin. antibiotic, is described. Key to the development of this synthesis was the elucidation of a Camps cyclization reaction that occurs in the solid-phase when conventionally used kynurenine (Kyn) synthons, such as Fmoc-L-Kyn(Boc,CHO)-OH and Fmoc-L-Kyn(CHO,CHO)-OH, are exposed to 20% 2-methylpiperidine (2MP)/DMF. During the synthesis of daptomycin, this side reaction was accompanied by intractable peptide decomposition, which resulted in a low yield of Dap and a 4-quinolone containing peptide. The Camps cyclization was found to occur in solution when Boc-L-Kyn(Boc,CHO)-Ot-Bu and Boc-L-Kyn(CHO,CHO)-OMe were exposed to 20% 2MP/DMF giving the corresponding 4-quinolone amino acid. In contrast, Boc-L-Kyn(CHO)-OMe was stable under these conditions, demonstrating that removing one of the electron withdrawing groups from the aforementioned building blocks prevents enolization in 2MP/DMF. Hence, a new synthesis of daptomycin was developed using Fmoc-L-Kyn(Boc)-OH, which is prepared in two steps from Fmoc-L-Trp(Boc)-OH, that proceeded with an unprecedented 22% overall yield. The simplicity and efficiency of this synthesis will facilitate the preparation of analogs of daptomycin. In addition, the elucidation of this side reaction will simplify preparation of other Kyn-containing natural products via Fmoc SPPS. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Recommanded Product: ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Both the triazoles and their derivatives have significant biological properties including antimicrobial, antiviral, antitubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory, and antidepressant activities.Recommanded Product: ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Chen, Rui et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2018 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Computed Properties of C17H27F6N7OP2

Chemical Derivatization Strategy for Extending the Identification of MHC Class I Immunopeptides was written by Chen, Rui;Fauteux, Francois;Foote, Simon;Stupak, Jacek;Tremblay, Tammy-Lynn;Gurnani, Komal;Fulton, Kelly M.;Weeratna, Risini D.;Twine, Susan M.;Li, Jianjun. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2018.Computed Properties of C17H27F6N7OP2 The following contents are mentioned in the article:

Neoantigen-based therapeutic vaccines have a high potential impact on tumor eradication and patient survival. Mass spectrometry (MS)-based immunopeptidomics has the capacity to identify tumor-associated epitopes and pinpoint mutation-bearing major histocompatibility complex (MHC)-binding peptides. This approach presents several challenges, including the identification of low-abundance peptides. In addition, MHC peptides have much lower MS/MS identification rates than tryptic peptides due to their shorter sequence and lack of basic amino acid at C-termini. In this study, we report the development and application of a novel chem. derivatization strategy that combines the anal. of native, dimethylated, and alkylamidated peptides by liquid chromatog.-tandem mass spectrometry (LC-MS/MS) to expand the coverage of the MHC peptidome. The results revealed that dimethylation increases hydrophobicity and ionization efficiency of MHC class I peptides, while alkylamidation significantly improves the fragmentation by producing more y-ions during MS/MS fragmentation. Thus, the combination of dimethylation and alkylamidation enabled the identification of peptides that could not be identified from the anal. of their native form. Using this strategy, we identified 3148 unique MHC I peptides from HCT 116 cell lines, compared to only 1388 peptides identified in their native form. Among these, 10 mutation-bearing peptides were identified with high confidence, indicating that this chem. derivatization strategy is a promising approach for neoantigen discovery in clin. applications. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Computed Properties of C17H27F6N7OP2).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Computed Properties of C17H27F6N7OP2

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Chuprakov, Stepan et al. published their research in Bioconjugate Chemistry in 2021 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Category: triazoles

Tandem-Cleavage Linkers Improve the In Vivo Stability and Tolerability of Antibody-Drug Conjugates was written by Chuprakov, Stepan;Ogunkoya, Ayodele O.;Barfield, Robyn M.;Bauzon, Maxine;Hickle, Colin;Kim, Yun Cheol;Yeo, Dominick;Zhang, Fangjiu;Rabuka, David;Drake, Penelope M.. And the article was included in Bioconjugate Chemistry in 2021.Category: triazoles The following contents are mentioned in the article:

Although peptide motifs represent the majority of cleavable linkers used in clin.-stage antibody-drug conjugates (ADCs), the sequences are often sensitive to cleavage by extracellular enzymes, such as elastase, which leads to systemic release of the cytotoxic payload. This action reduces the therapeutic index by causing off-target toxicities that can be dose-limiting. For example, a common side-effect of ADCs made using peptide-cleavable linkers is myelosuppression, including neutropenia. Only a few reports describe methods for optimizing peptide linkers to maintain efficient and potent tumor payload delivery while enhancing circulating stability. Herein, the authors address these critical limitations through the development of a tandem-cleavage linker strategy, where two sequential enzymic cleavage events mediate payload release. The authors prepared dipeptides that are protected from degradation in the circulation by a sterically encumbering glucuronide moiety. Upon ADC internalization and lysosomal degradation, the monosaccharide is removed and the exposed dipeptide is degraded, which liberates the attached payload inside the target cell. The authors used CD79b-targeted monomethyl auristatin E (MMAE) conjugates as the model system and compared the stability, efficacy, and tolerability of ADCs made with tandem-cleavage linkers to ADCs made using standard technol. with the vedotin linker. The results, where rat studies showed dramatically improved tolerability in the hematopoietic compartment, highlight the role that linker stability plays in efficacy and tolerability and also offer a means of improving an ADC’s therapeutic index for improved patient outcomes. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Category: triazoles).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Category: triazoles

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Nishikaze, Takashi et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2014 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeReference of 156311-83-0

In-Depth Structural Characterization of N-Linked Glycopeptides Using Complete Derivatization for Carboxyl Groups Followed by Positive- and Negative-Ion Tandem Mass Spectrometry was written by Nishikaze, Takashi;Kawabata, Shin-ichirou;Tanaka, Koichi. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2014.Reference of 156311-83-0 The following contents are mentioned in the article:

Tandem mass spectrometry (MS/MS or MSn) is a powerful tool for characterizing N-linked glycopeptide structures. However, it is still difficult to obtain detailed structural information on the glycan moiety directly from glycopeptide ions. Here, the authors propose a new method for in-depth anal. of the glycopeptide structure using MS/MS. This method involves complete derivatization of carboxyl groups in glycopeptides. Methylamidation using PyAOP as a condensing reagent has been optimized for derivatizing all carboxyl groups in glycopeptides. By derivatizing carboxyl groups on the peptide moiety (i.e., Asp, Glu, and C-terminus), the glycopeptides efficiently produce informative glycan fragment ions, including the nonreducing end of the glycan moiety under neg.-ion collision-induced dissociation (CID) conditions. These glycan fragment ions can define detailed structural features on the glycan moiety (e.g., the specific composition of the two antennae, the location of fucose residues, and the presence/absence of bisecting GlcNAc residues). For sialylated glycopeptides, carboxyl groups on sialic acid residues are simultaneously derivatized using methylamidation, suppressing preferential loss of residues during MS anal. As a result, both sialylated and nonsialylated glycopeptides can be analyzed in the same manner. Pos.-ion CID of methylamine-derivatized glycopeptides mainly provides information on peptide sequence and glycan composition, whereas neg.-ion CID provides in-depth structural information on the glycan moiety. The derivatization step can be readily incorporated into conventional pretreatment for glycopeptide MS anal. without loss of sensitivity, making derivatization suitable for practical use. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Reference of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeReference of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Nishikaze, Takashi et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2017 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Related Products of 156311-83-0

Differentiation of Sialyl Linkage Isomers by One-Pot Sialic Acid Derivatization for Mass Spectrometry-Based Glycan Profiling was written by Nishikaze, Takashi;Tsumoto, Hiroki;Sekiya, Sadanori;Iwamoto, Shinichi;Miura, Yuri;Tanaka, Koichi. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2017.Related Products of 156311-83-0 The following contents are mentioned in the article:

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been used for high-throughput glycan profiling anal. In spite of the biol. importance of sialic acids on non-reducing ends of glycans, it is still difficult to analyze glycans containing sialic acid residues due to their instability and the presence of linkage isomers. The authors describe a one-pot glycan purification/derivatization method employing a newly developed linkage-specific sialic acid derivatization for MS-based glycan profiling with differentiation of sialyl linkage isomer. The derivatization, termed Sialic Acid Linkage Specific Alkylamidation (SALSA), consists of sequential two-step alkylamidations. As a result of the reactions, α2,6- and α2,3-linked sialic acids are selectively amidated with different length of alkyl chains, allowing distinction of α2,3-/α2,6-linkage isomers from given mass spectra. The authors’ studies using N-glycan standards with known sialyl linkages proved high suitability of SALSA for reliable relative quantification of α2,3-/α2,6-linked sialic acids compared with existing sialic acid derivatization approaches. SALSA fully stabilizes both α2,3- and α2,6-linked sialic acids by alkylamidation; thereby, it became possible to combine SALSA with existing glycan anal./preparation methods as follows. The combination of SALSA and chemoselective glycan purification using hydrazide beads allows easy one-pot purification of glycans from complex biol. samples, together with linkage-specific sialic acid stabilization. Moreover, SALSA-derivatized glycans can be labeled via reductive amination without causing byproducts such as amide decomposition This solid-phase SALSA followed by glycan labeling has been successfully applied to human plasma N-glycome profiling. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Related Products of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Related Products of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Nasrolahi Shirazi, Amir et al. published their research in Molecular Pharmaceutics in 2013 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Many triazoles are versatile, biologically active compounds commonly used as fungicides and plant retardants. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Related Products of 156311-83-0

Efficient Delivery of Cell Impermeable Phosphopeptides by a Cyclic Peptide Amphiphile Containing Tryptophan and Arginine was written by Nasrolahi Shirazi, Amir;Tiwari, Rakesh Kumar;Oh, Donghoon;Banerjee, Antara;Yadav, Arpita;Parang, Keykavous. And the article was included in Molecular Pharmaceutics in 2013.Related Products of 156311-83-0 The following contents are mentioned in the article:

Phosphopeptides are valuable reagent probes for studying protein-protein and protein-ligand interactions. The cellular delivery of phosphopeptides is challenging because of the presence of the neg. charged phosphate group. The cellular uptake of a number of fluorescent-labeled phosphopeptides, including F’-GpYLPQTV, F’-NEpYTARQ, F’-AEEEIYGEFEAKKKK, F’-PEpYLGLD, F’-pYVNVQN-NH2, and F’-GpYEEI (F’ = fluorescein), was evaluated in the presence or absence of a [WR]4, a cyclic peptide containing alternative arginine (R) and tryptophan (W) residues, in human leukemia cells (CCRF-CEM) after 2 h incubation using flow cytometry. [WR]4 improved significantly the cellular uptake of all phosphopeptides. PEpYLGLD is a sequence that mimics the pTyr1246 of ErbB2 that is responsible for binding to the Chk SH2 domain. The cellular uptake of F’-PEpYLGLD was enhanced dramatically by 27-fold in the presence of [WR]4 and was found to be time-dependent. Confocal microscopy of a mixture of F’-PEpYLGLD and [WR]4 in live cells exhibited intracellular localization and significantly higher cellular uptake compared to that of F’-PEpYLGLD alone. Transmission electron microscopy (TEM) and isothermal calorimetry (ITC) were used to study the interaction of PEpYLGLD and [WR]4. TEM results showed that the mixture of PEpYLGLD and [WR]4 formed noncircular nanosized structures with width and height of 125 and 60 nm, resp. ITC binding studies confirmed the interaction between [WR]4 and PEpYLGLD. The binding isotherm curves, derived from sequential binding models, showed an exothermic interaction driven by entropy. These studies suggest that amphiphilic peptide [WR]4 can be used as a cellular delivery tool of cell-impermeable neg. charged phosphopeptides. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Related Products of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Many triazoles are versatile, biologically active compounds commonly used as fungicides and plant retardants. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Related Products of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Winqvist, Anna et al. published their research in European Journal of Organic Chemistry in 2008 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles are important five-member nitrogen heterocycles involved in a wide range of industrial applications such as agrochemicals, corrosion inhibitors, dyes, optical brighteners, as well as biologically active agents.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Electric Literature of C17H27F6N7OP2

Investigation on condensing agents for phosphinate ester formation with nucleoside 5′-hydroxyl functions was written by Winqvist, Anna;Stroemberg, Roger. And the article was included in European Journal of Organic Chemistry in 2008.Electric Literature of C17H27F6N7OP2 The following contents are mentioned in the article:

Condensation of a uridine 3′-deoxy-3′-C-methylenephosphinate with thymidine and guanosine derivatives to form methylenephosphinate esters was investigated. A number of different condensing agents were compared, and these include pivaloyl chloride, triisopropylbenzenesulfonyl chloride (TPS-Cl), phosphonium and uronium derivatives, numerous chlorophosphates and bis(2-oxo-3-oxazolidinyl)phosphinic chloride (OXP). The phosphonium derivatives gave slow condensations or oxidative side reactions (hydroxybenzotriazole derivatives) during preactivation of the methylenephosphinate. Pivaloyl chloride gave long coupling times, and competing 5′-O-pivaloylation was detected. TPS-Cl gave rapid condensation but also rapid oxidation of the product. Most chlorophosphates gave competing 5′-O-phosphorylation of the nucleoside component, as well as base phosphorylation. However, 2-chloro-5,5-dimethyl-2-oxo-1,3,2-dioxaphosphorinane (DMOCP) gave a rather efficient formation of dinucleoside methylenephosphinates at a decent rate. However, O6-protection of guanines could become necessary with this reagent, since upon extended reaction time traces of O6-phosphorylation were detected even with a low concentration (60 mM) of DMOCP (2 equivalent to phosphinate). Bis(2-oxo-3-oxazolidinyl)phosphinic chloride (OXP) can, unlike DMOCP, be used in nearly equimolar amounts to phosphinate. Under such conditions OXP gives virtually quant. condensation at a rate comparable to that of 2 equivalent of DMOCP and with no side reactions detected. Any decomposition of OXP-preactivated phosphinate could also not be detected. Nucleophilic catalysts, more powerful than pyridine (N-methylimidazole, iodide and 4-methoxypyridine), accelerated the reactions with OXP, but preactivation in the absence of the 5′-OH component led to decomposition of the activated phosphinate. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Electric Literature of C17H27F6N7OP2).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles are important five-member nitrogen heterocycles involved in a wide range of industrial applications such as agrochemicals, corrosion inhibitors, dyes, optical brighteners, as well as biologically active agents.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Electric Literature of C17H27F6N7OP2

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics