Long, Ya-Qiu et al. published their research in Bioorganic & Medicinal Chemistry in 2003 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Triazoles are compounds with a vast spectrum of applications, varying from materials (polymers), agricultural chemicals, pharmaceuticals, photoactive chemicals and dyes.Synthetic Route of C17H27F6N7OP2

Global optimization of conformational constraint on non-phosphorylated cyclic peptide antagonists of the Grb2-SH2 domain was written by Long, Ya-Qiu;Lung, Feng-Di T.;Roller, Peter P.. And the article was included in Bioorganic & Medicinal Chemistry in 2003.Synthetic Route of C17H27F6N7OP2 The following contents are mentioned in the article:

Following our earlier work on a phage library derived non-phosphorylated thioether-cyclized peptide inhibitor of Grb2 SH2 domain, a series of small peptide analogs with various cyclization linkage or various ring size were designed and synthesized and evaluated to investigate the optimal conformational constraint for this novel Grb2-SH2 blocker. Our previous SAR studies have indicated that constrained conformation as well as all amino acids except Leu2 and Gly7 in this lead peptide, cyclo(CH2CO-Glu1-Leu-Tyr-Glu-Asn-Val-Gly-Met-Tyr-Cys10)-amide (termed G1TE), was necessary for sustenance of the biol. activity. In this study, in an effort to derive potent and bioavailable Grb2-SH2 inhibitor with minimal sequence, we undertook a systematic conformational study on this non-phosphorylated cyclic ligand by optimizing the ring linkage, ring configuration and ring size. The polarity and configuration of the cyclization linkage were implicated important in assuming the active conformation. Changing the flexible thioether linkage in G1TE into the relatively rigid sulfoxide linkage secured a 4-fold increase in potency (4, IC50 = 6.5 μM). However, open chain, shortening or expanding the ring size led to a marked loss of inhibitory activity. Significantly, the introduction of ω-amino carboxylic acid linker in place of three C-terminal amino acids in G1TE can remarkably recover the apparently favorable conformation, which is otherwise lost because of the reduced ring size. This modification, combined with favorable substitutions of Gla for Glu1 and Adi for Glu4 in the resulting six-residue cyclic peptide, afforded peptide, with an almost equal potency ,( IC50 = 23.3 μM) relative to G1TE. Moreover, the lipophilic chain in ω-amino carboxylic acid may confer better cell membrane permeability to the peptide. These newly developed G1TE analogs with smaller ring size and less peptide character but equal potency can serve as templates to derive potent and specific non-phosphorylated Grb2-SH2 antagonists. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Synthetic Route of C17H27F6N7OP2).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Triazoles are compounds with a vast spectrum of applications, varying from materials (polymers), agricultural chemicals, pharmaceuticals, photoactive chemicals and dyes.Synthetic Route of C17H27F6N7OP2

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Basava, Vikram et al. published their research in Organic & Biomolecular Chemistry in 2016 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. 1,2,3-Triazoles are usually prepared following (3+2) cycloaddition protocols. A common technique for unsubstituted triazoles is the Huisgen azide-alkyne 1,3-dipolar cycloaddition: a azide and an alkyne react at high temperature to form a ring. However, the Huisgen strategy produces a mixture of isomers (typically 1,4- and 1,5-disubstituted) when used to produce substituted triazoles.Reference of 156311-83-0

A novel bis(pinacolato)diboron-mediated N-O bond deoxygenative route to C6 benzotriazolyl purine nucleoside derivatives was written by Basava, Vikram;Yang, Lijia;Pradhan, Padmanava;Lakshman, Mahesh K.. And the article was included in Organic & Biomolecular Chemistry in 2016.Reference of 156311-83-0 The following contents are mentioned in the article:

Reaction of amide bonds in t-butyldimethylsilyl-protected inosine, 2′-deoxyinosine, guanosine, 2′-deoxyguanosine, and 2-phenylinosine with com. available peptide-coupling agents (benzotriazol-1H-yloxy)tris(dimethylaminophosphonium) hexafluorophosphate (BOP), (6-chloro-benzotriazol-1H-yloxy)trispyrrolidinophosphonium hexafluorophosphate (PyClocK), and (7-azabenzotriazol-1H-yloxy)trispyrrolidinophosphonium hexafluorophospate (PyAOP) gave the corresponding O6-(benzotriazol-1-yl) nucleoside analogs containing a C-O-N bond. Upon exposure to bis(pinacolato)diboron and base, the O6-(benzotriazol-1-yl) and O6-(6-chlorobenzotriazol-1-yl) purine nucleoside derivatives obtained from BOP and PyClocK, resp., underwent N-O bond reduction and C-N bond formation, leading to the corresponding C6 benzotriazolyl purine nucleoside analogs. In contrast, the 7-azabenzotriazolyloxy purine nucleoside derivatives did not undergo efficient deoxygenation, but gave unsym. nucleoside dimers instead. This is consistent with a prior report on the slow reduction of 1-hydroxy-1H-4-aza and 1-hydroxy-1H-7-azabenzotriazoles. Because of the limited number of com. benzotriazole-based peptide coupling agents, and to show the applicability of the method when such coupling agents are unavailable, 1-hydroxy-1H-5,6-dichlorobenzotriazole was synthesized. Using this compound, silyl-protected inosine and 2′-deoxyinosine were converted to the O6-(5,6-dichlorobenzotriazol-1-yl) derivatives via in situ amide activation with PyBroP. The O6-(5,6-dichlorobenzotriazol-1-yl) purine nucleosides so obtained also underwent smooth reduction to afford the corresponding C6 5,6-dichlorobenzotriazolyl purine nucleoside derivatives A total of 13 examples were studied with successful reactions occurring in 11 cases (the azabenzotriazole derivatives, mentioned above, being the only unreactive entities). To understand whether these reactions are intra or intermol. processes, a crossover experiment was conducted. The results of this experiment as well as those from reactions conducted in the absence of bis(pinacolato)diboron and in the presence of water indicate that detachment of the benzotriazoloxy group from the nucleoside likely occurs, followed by reduction, and re-attachment of the ensuing benzotriazole, leading to products. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Reference of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. 1,2,3-Triazoles are usually prepared following (3+2) cycloaddition protocols. A common technique for unsubstituted triazoles is the Huisgen azide-alkyne 1,3-dipolar cycloaddition: a azide and an alkyne react at high temperature to form a ring. However, the Huisgen strategy produces a mixture of isomers (typically 1,4- and 1,5-disubstituted) when used to produce substituted triazoles.Reference of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Shepard, Scott M. et al. published their research in Journal of the American Chemical Society in 2019 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeFormula: C17H27F6N7OP2

Functionalization of Intact Trimetaphosphate: A Triphosphorylating Reagent for C, N, and O Nucleophiles was written by Shepard, Scott M.;Cummins, Christopher C.. And the article was included in Journal of the American Chemical Society in 2019.Formula: C17H27F6N7OP2 The following contents are mentioned in the article:

Trimetaphosphate (TriMP, [P3O9]3-) reacts with PyAOP ([(H8C4N)3PON4C5H3][PF6]) to yield an activated TriMP, [P3O9P(NC4H8)3] (1), incorporating a phosphonium moiety. Anion 1 is isolated as its bis(triphenylphosphine)iminium (PPN) salt in 70% yield and phosphorylates nucleophiles with elimination of phosphoramide OP(NC4H8)3. Treatment of 1 with amines HNR1R2 generates [P3O8NR1R2]2- (2a: R1 = R2 = Et; 2b: R1 = H, R2 = tBu) in greater than 70% yield as mixed PPN and alkyl ammonium salts. Treatment of 1 with primary alcs. in the presence of a tertiary amine base results in salts of intact TriMP alkyl esters [P3O9R]2- (3a: R = Me; 3b: R = Et) in greater than 60% isolated yield. Reaction of 1 with [PPN][H2PO4] provides orthophosphoryl TriMP (4, [P4O12H2]2-) in 40% yield as the PPN salt. Treatment of 1 with Wittig reagent H2CPPh3 (4 equiv) provides phosphorus ylide [P3O8CHPPh3]2- (5) in 61% yield as a mixed salt. Ylide 5 reacts with water to provide [P3O8Me]2-(6) and with aldehydes to give olefins [P3O8CHCHR]2- (7a: R = H; 7b: R = 4-C6H4Br), products in which one TriMP oxygen is replaced by a phosphonate P-C linkage. Treatment of intact TriMP derivatives 2a, 2b, 3a, and 7a with aqueous tetrabutylammonium hydroxide results in ring opening to linear triphosphate derivatives X-ray crystal structures are provided for salts of 1, 2a, 3a, and 4. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Formula: C17H27F6N7OP2).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeFormula: C17H27F6N7OP2

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Wada, Takeshi et al. published their research in Journal of the American Chemical Society in 1997 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Application of 156311-83-0

Chemical Synthesis of Oligodeoxyribonucleotides Using N-Unprotected H-Phosphonate Monomers and Carbonium and Phosphonium Condensing Reagents: O-Selective Phosphonylation and Condensation was written by Wada, Takeshi;Sato, Yuichi;Honda, Fumio;Kawahara, Shun-ichi;Sekine, Mitsuo. And the article was included in Journal of the American Chemical Society in 1997.Application of 156311-83-0 The following contents are mentioned in the article:

Oligodeoxyribonucleotides were synthesized using H-phosphonate monomers without amino protection. The H-phosphonate monomers of deoxyadenosine, deoxycytidine, and deoxyguanosine bearing the free amino groups were synthesized in good yields by O-selective phosphonylation of the parent 5′-O-(dimethoxytrityl)deoxyribonucleosides. It was found that the amino groups of the nucleosides were not modified during internucleotidic bond formation where (benzotriazol-1-yloxy)carbonium and -phosphonium compounds were employed as condensing reagents. The most effective condensing reagent for rapid internucleotidic bond formation was 2-(benzotriazol-1-yloxy)-1,1-dimethyl-2-pyrrolidin-1-yl-1,3,2-diazaphospholidinium hexafluorophosphate (BOMP). In the present H-phosphonate method, 2-(phenylsulfonyl)-3-(3-nitrophenyl)oxaziridine (BNO) was employed as a new oxidizing reagent for the oxidation of internucleotidic H-phosphonate linkages under anhydrous conditions in the presence of N,O-bis(trimethylsilyl)acetamide. The reaction mechanism for the O-selective condensation was investigated in detail by means of 31P NMR spectroscopy. Unprecedented oxidation of the H-phosphonate monomers was observed during activation of the monomers with (benzotriazol-1-yloxy)phosphonium and -carbonium condensing reagents in the absence of the 5′-hydroxyl components. A mechanism for the O-selective condensation was proposed on the basis of ab initio MO calculations for the model compounds at the HF/6-31G* level. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Application of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Application of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Krusemark, Casey J. et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2008 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Safety of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Global Amine and Acid Functional Group Modification of Proteins was written by Krusemark, Casey J.;Ferguson, Jonathan T.;Wenger, Craig D.;Kelleher, Neil L.;Belshaw, Peter J.. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2008.Safety of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) The following contents are mentioned in the article:

A sequential reaction methodol. is employed for the complete derivatization of protein thiols, amines, and acids in high purity under denaturing conditions. Following standard thiol alkylation, protein amines are modified via reductive methylation with formaldehyde and pyridine-borane. Protein acids are subsequently amidated under buffered conditions in DMSO using the coupling reagent (7-azabenzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate. The generality of the approach is demonstrated with four proteins and with several amines yielding near-quant. transformations as characterized by high-resolution Fourier transform mass spectrometry. The developed approach has numerous implications for protein characterization and general protein chem. Applications in mass spectrometry (MS) based proteomics of intact proteins (top-down MS) are explored, including the addition of stable isotopes for relative quantitation and protein identification through functional group counting. The methodol. can be used for altering the phys. and chem. properties of proteins, as demonstrated with amidation to modify protein isoelec. point and through derivatization with quaternary amines. Addnl., the chem. has applications in the semisynthesis of monodisperse polymers based on protein scaffolds. The authors prepare proteins modified with azides and alkynes to enable further functionalization via copper(I)-catalyzed 1,3-dipolar Huisgen cycloaddition (“click”) chem. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Safety of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Safety of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Mitra, Indranil et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2016 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Related Products of 156311-83-0

Structural Characterization of Serum N-Glycans by Methylamidation, Fluorescent Labeling, and Analysis by Microchip Electrophoresis was written by Mitra, Indranil;Snyder, Christa M.;Zhou, Xiaomei;Campos, Margit I.;Alley, William R.;Novotny, Milos V.;Jacobson, Stephen C.. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2016.Related Products of 156311-83-0 The following contents are mentioned in the article:

To characterize the structures of N-glycans derived from human serum, the authors report a strategy that combines microchip electrophoresis, standard addition, enzymic digestion, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The authors compared: (1) electrophoretic mobilities of known N-glycans from well-characterized (standard) glycoproteins through standard addition, (2) the electrophoretic mobilities of N-glycans with their mol. weights determined by MALDI-MS, and (3) electrophoretic profiles of N-glycans enzymically treated with fucosidase. The key step to identify the sialylated N-glycans was to quant. neutralize the neg. charge on both α2,3- and α2,6-linked sialic acids by covalent derivatization with methylamine. Both neutralized and nonsialylated N-glycans from these samples were then reacted with 8-aminopyrene-1,3,6-trisulfonic acid (APTS) to provide a fluorescent label and a triple-neg. charge, separated by microchip electrophoresis, and detected by laser-induced fluorescence. The methylamidation step leads to a 24% increase in the peak capacity of the separation and direct correlation of electrophoretic and MALDI-MS results. In total, 37 unique N-glycan structures were assigned to 52 different peaks recorded in the electropherograms of the serum samples. This strategy ensures the needed separation efficiency and detectability, easily resolves linkage and positional glycan isomers, and is highly reproducible. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Related Products of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Related Products of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Shaikh, Ashif Y. et al. published their research in European Journal of Organic Chemistry in 2021 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA. 1,2,3-Triazoles are usually prepared following (3+2) cycloaddition protocols. A common technique for unsubstituted triazoles is the Huisgen azide-alkyne 1,3-dipolar cycloaddition: a azide and an alkyne react at high temperature to form a ring. However, the Huisgen strategy produces a mixture of isomers (typically 1,4- and 1,5-disubstituted) when used to produce substituted triazoles.HPLC of Formula: 156311-83-0

Optimized synthesis of Fmoc/Boc-protected PNA monomers and their assembly into PNA oligomers. was written by Shaikh, Ashif Y.;Bjorkling, Fredrik;Nielsen, Peter E.;Franzyk, Henrik. And the article was included in European Journal of Organic Chemistry in 2021.HPLC of Formula: 156311-83-0 The following contents are mentioned in the article:

Continuous advancement of application of peptide nucleic acid (PNA) oligomers encouraged exploration of rapid and efficient synthesis of PNA monomers and oligomers. Among the PNA monomers developed, only a few are commonly used in automated PNA synthesis. Herein, we report short and efficient protocols suitable for large-scale synthesis of Fmoc/Boc-protected PNA monomers with advantageous solubility properties; these also facilitate purification due to the traceless nature of the Boc protecting group. Initially, several coupling reagents were screened for assembly of a pentamer containing all four nucleobases, and then the most promising reagents were tested in the synthesis of a decamer. The Fmoc/Boc-protected monomers proved compatible with both manual synthesis and assembly on an automated peptide synthesizer at room temperature or at 40°C. As compared to the commonly used coupling agent, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU), both 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) and [ethyl cyano(hydroxyimino)acetato-O2]tri-1-pyrrolidinylphosphonium hexafluorophosphate (PyOxim) proved more favorable, with the latter being superior. A previously reported side reaction of guanine bases in the presence of benzotriazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) was not observed with the phosphonium salts. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0HPLC of Formula: 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA. 1,2,3-Triazoles are usually prepared following (3+2) cycloaddition protocols. A common technique for unsubstituted triazoles is the Huisgen azide-alkyne 1,3-dipolar cycloaddition: a azide and an alkyne react at high temperature to form a ring. However, the Huisgen strategy produces a mixture of isomers (typically 1,4- and 1,5-disubstituted) when used to produce substituted triazoles.HPLC of Formula: 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Uhl, Philipp et al. published their research in Advanced Therapeutics (Weinheim, Germany) in 2021 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Safety of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Overcoming the Mucosal Barrier: Tetraether Lipid-Stabilized Liposomal Nanocarriers Decorated with Cell-Penetrating Peptides Enable Oral Delivery of Vancomycin was written by Uhl, Philipp;Sauter, Max;Hertlein, Tobias;Witzigmann, Dominik;Laffleur, Flavia;Hofhaus, Goetz;Fidelj, Veronika;Tursch, Anja;Oezbek, Suat;Hopke, Elisa;Haberkorn, Uwe;Bernkop-Schnuerch, Andreas;Ohlsen, Knut;Fricker, Gert;Mier, Walter. And the article was included in Advanced Therapeutics (Weinheim, Germany) in 2021.Safety of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) The following contents are mentioned in the article:

Despite the high medical need for oral peptide delivery, instability in the gastrointestinal tract and low mucosal permeation still impede this preferred route of administration. Herein, a liposomal nanocarrier combining two self-reliant strategies to overcome these delivery barriers is reported. This approach enables the design of a nanocarrier system with synergistic properties: tetraether lipids derived from archaea are incorporated into liposomes to provide the particles with the stability required to traverse the stomach. When the surface of the resulting inert particles is modified with cell-penetrating peptides, mucosal permeation can be achieved. The designed nanocarrier is proven effective by the high mucosal uptake of the glycopeptide antibiotic vancomycin in Ussing chamber studies. Efficacy in vivo is demonstrated in naive rats, where a highly increased oral bioavailability is obtained for vancomycin, a drug known to be minimally absorbed. In contrast, administration of liposomes with single modification (tetraether lipids) leads to a substantially lower bioavailability. Therapeutic efficacy is proven by the antimicrobial activity of vancomycin in a Galleria mellonella and a systemic infection mouse model. The high oral bioavailability in absence of cytotoxic effects demonstrates that this nanocarrier delivery strategy might boost the oral application of macromol. drugs in general. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Safety of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Safety of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Liu, Xin et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2010 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Many triazoles are versatile, biologically active compounds commonly used as fungicides and plant retardants. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeSynthetic Route of C17H27F6N7OP2

Methylamidation for Sialoglycomics by MALDI-MS: A Facile Derivatization Strategy for Both α2,3- and α2,6-Linked Sialic Acids was written by Liu, Xin;Qiu, Hongyu;Lee, Rhonda Kuo;Chen, Wangxue;Li, Jianjun. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2010.Synthetic Route of C17H27F6N7OP2 The following contents are mentioned in the article:

Neutralization of carboxylic acid is an important means to avoid sialic acid dissociation when sialylated glycans are analyzed by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). In this paper, the authors describe a simple and rapid method to modify the sialic acids of sialylated glycans in the presence of methylamine and (7-azabenzotriazol-1-yloxy)trispyrrolidinophosphonium hexafluorophosphate (PyAOP). After methylamidation, sialylated glycans can be analyzed by MALDI-MS without loss of the sialic acid moiety. The electrospray ionization mass spectrometry (ESI-MS) and MALDI-MS anal. of both 3′- and 6′-sialyllactose derivatives indicated that the quant. conversion of sialic acids was achieved, regardless of their linkage types. This derivatization strategy was further validated with the N-glycans released from three standard glycoproteins (fetuin, human acid glycoprotein, and bovine acid glycoprotein) containing different types of complex glycans. Most importantly, this derivatization method enabled the successful characterization of N-glycans of sera from different species (human, mouse, and rat) by MALDI-MS. Because of the mild reaction conditions, the modification in sialic acid residues can be retained. This improvement makes it possible to detect sialylated glycans containing O-acetylated sialic acid moieties using MALDI-MS in pos.-ion mode. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Synthetic Route of C17H27F6N7OP2).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Many triazoles are versatile, biologically active compounds commonly used as fungicides and plant retardants. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeSynthetic Route of C17H27F6N7OP2

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Zhang, Qiwei et al. published their research in Analytical Chemistry (Washington, DC, United States) in 2014 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeFormula: C17H27F6N7OP2

Methylamidation for Isomeric Profiling of Sialylated Glycans by NanoLC-MS was written by Zhang, Qiwei;Feng, Xiaojun;Li, Henghui;Liu, Bi-Feng;Lin, Yawei;Liu, Xin. And the article was included in Analytical Chemistry (Washington, DC, United States) in 2014.Formula: C17H27F6N7OP2 The following contents are mentioned in the article:

The anal. of isomeric glycans is a challenging task. In this work, a new strategy was developed for isomer-specific glycan profiling using nanoLC-MS with PGC as the stationary phase. Native glycans were derivatized in the presence of methylamine and trispyrrolidinophosphonium hexafluorophosphate and reduced by the ammonia-borane complex. Methylamidation stabilized the retention time and peak width and improved the detection sensitivity of sialylated glycans to 2-80-fold in comparison to previous ESI-MS methods using the pos.-ion mode. Up to 19 tetrasialylated glycan species were identified in the derivatized human serum sample, which were difficult to detect in the sample without derivatization. Furthermore, due to high detection sensitivity and chromatog. resolution, more isomeric glycans could be identified from the model glycoprotein Fetuin and the human serum sample. As a result, up to seven isomers were observed for the disialylated biantennary glycan released from Fetuin, and three of them were identified for the first time in this study. Using the developed anal. strategy, a total of 293 glycan species were obtained from the human serum sample, representing an increase of over 100 peaks in comparison to the underivatized sample. The strategy greatly facilitates the profiling of isomeric glycans and the anal. of trace-level samples. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Formula: C17H27F6N7OP2).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeFormula: C17H27F6N7OP2

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics