Zhai, Yiran et al. published their research in Drug and Chemical Toxicology (1977) in 2016 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA. 1,2,3-Triazoles are usually prepared following (3+2) cycloaddition protocols. A common technique for unsubstituted triazoles is the Huisgen azide-alkyne 1,3-dipolar cycloaddition: a azide and an alkyne react at high temperature to form a ring. However, the Huisgen strategy produces a mixture of isomers (typically 1,4- and 1,5-disubstituted) when used to produce substituted triazoles.Product Details of 1614-12-6

The mechanism and risk factors of clopidogrel-induced liver injury was written by Zhai, Yiran;Wang, Lili;Yang, Fan;Feng, Guo;Feng, Shan;Cui, Tianyi;An, Lijun;He, Xin. And the article was included in Drug and Chemical Toxicology (1977) in 2016.Product Details of 1614-12-6 This article mentions the following:

Clopidogrel (CLP) is a prodrug which is widely used as a platelet aggregation inhibitor. Hepatotoxicity is rare but a potentially serious adverse reaction that is associated with CLP. Thiophene in CLP (the thienopyridine derivative) is a group that is easily oxidated by cytochrome P 450 enzymes (CYP450s) to generate reactive metabolites (RMs), it may be implicated in the mechanism of CLP-induced hepatotoxicity. CYP2C19 and CYP2B6 are important CYP450s involved in the metabolism and activation of CLP, and the aim of this study is to investigate whether the metabolites of CYP2C19 and CYP2B6 are associated with the CLP-induced liver injury. Primary rat hepatocytes are applied to evaluate the hepatotoxicity of CLP. Glutathione-depleted mouse model is used to evaluate whether this toxicity of CLP is metabolized by CYP450s. We also used HepG2 cells co-incubated with recombinant CYP2B6 and CYP2C19 enzymes to further assess whether the metabolites of CYP2C19 and CYP2B6 are associated with the CLP-induced hepatocellular toxicity. CLP in high dose (100 μM and 300 μM) showed cytotoxicity in primary rat hepatocytes assay. Administration of CLP with L-buthionine-S, R-sulfoxinine (BSO) for seven days enhanced the liver injury of CLP. The level of ALT, AST and TBIL in plasma increased significantly, and the histopathol. results showed the obvious liver injury; Pretreatment of 1-aminobenzotriazole, a nonspecific inhibitor of CYP450s, suppressed CLP-induced hepatotoxicity; CLP showed a dose-dependent toxicity in HepG2/CYP2C19 enzyme and HepG2/CYP2B6 enzyme models. High activities of CYP2C19 and CYP2B6 are the risk factors for hepatocellular toxicity of CLP. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Product Details of 1614-12-6).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA. 1,2,3-Triazoles are usually prepared following (3+2) cycloaddition protocols. A common technique for unsubstituted triazoles is the Huisgen azide-alkyne 1,3-dipolar cycloaddition: a azide and an alkyne react at high temperature to form a ring. However, the Huisgen strategy produces a mixture of isomers (typically 1,4- and 1,5-disubstituted) when used to produce substituted triazoles.Product Details of 1614-12-6

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Kulkarni, Priyanka et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 2016 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Formula: C6H6N4

Intracellular unbound atorvastatin concentrations in the presence of metabolism and transport was written by Kulkarni, Priyanka;Korzekwa, Kenneth;Nagar, Swati. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 2016.Formula: C6H6N4 This article mentions the following:

Accurate prediction of drug target activity and rational dosing regimen design require knowledge of drug concentrations at the target. It is important to understand the impact of processes such as membrane permeability, partitioning, and active transport on intracellular drug concentrations The present study aimed to predict intracellular unbound atorvastatin concentrations and characterize the effect of enzyme-transporter interplay on these concentrations Single-pass liver perfusion studies were conducted in rats using atorvastatin (ATV, μM) alone at 4°C and at 37°C in presence of rifampin (RIF, 20 mM) and 1-aminobenzotriazole (ABT, 1 μM), sep. and in combination. The unbound intracellular ATV concentration was predicted with a five-compartment explicit membrane model using the parameterized diffusional influx clearance, active basolateral uptake clearance, andmetabolic clearance. Chem. inhibition of uptake andmetabolismat 37°C proved to be better controls relative to studies at 4°C. The predicted unbound intracellular concentration at the end of the 50-min perfusion in the +ABT, +ABT+RIF, and the ATV-only groups was 6.5 °M, 0.58 °M, and 5.14 °M, resp. The predicted total liver concentrations and amount recovered in bile were within 0.94-1.3 fold of the observed value in all groups. The fold difference in total liver concentration did not always extrapolate to the fold difference in predicted unbound concentration across groups. Together, these results support the use of compartmental modeling to predict intracellular concentrations in dynamic organ-based systems. These predictions can provide insight into the role of uptake transporters and metabolizing enzymes in determining drug tissue concentrations In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Formula: C6H6N4).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Formula: C6H6N4

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Harrison, James et al. published their research in Drug Metabolism & Disposition in 2018 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Application In Synthesis of 1H-Benzo[d][1,2,3]triazol-1-amine

Simultaneous assessment in vitro of transporter and metabolic processes in hepatic drug clearance: use of a media loss approach was written by Harrison, James;De Bruyn, Tom;Darwich, Adam S.;Houston, J. Brian. And the article was included in Drug Metabolism & Disposition in 2018.Application In Synthesis of 1H-Benzo[d][1,2,3]triazol-1-amine This article mentions the following:

Hepatocyte drug depletion-time assays are well established for determination of metabolic clearance in vitro. The present study focuses on the refinement and evaluation of a “media loss” assay, an adaptation of the conventional depletion assay involving centrifugation of hepatocytes prior to sampling, allowing estimation of uptake in addition to metabolism Using exptl. procedures consistent with a high throughput, a selection of 12 compounds with a range of uptake and metabolism characteristics (atorvastatin, cerivastatin, clarithromycin, erythromycin, indinavir, pitavastatin, repaglinide, rosuvastatin, saquinavir, and valsartan, with two control compounds-midazolam and tolbutamide) were investigated in the presence and absence of the cytochrome P 450 inhibitor 1-aminobenzotriazole and organic anion transporter protein inhibitor rifamycin SV in rat hepatocytes. Data were generated simultaneously for a given drug, and provided, through the use of a mechanistic cell model, clearance terms characterizing metabolism, active and passive uptake, together with intracellular binding and partitioning parameters. Results were largely consistent with the particular drug characteristics, with active uptake, passive diffusion, and metabolic clearances ranging between 0.4 and 777, 3 and 383, and 2 and 236μl/min per mg protein, resp. The same experiments provided total and unbound drug cellular partition coefficients ranging between 3.8 and 254 and 2.3 and 8.3, resp., and intracellular unbound fractions between 0.014 and 0.263. Following in vitro-in vivo extrapolation, the lowest prediction bias was noted using uptake clearance, compared with metabolic clearance or apparent clearance from the media loss assay alone. This approach allows rapid and comprehensive characterization of hepatocyte drug disposition valuable for prediction of hepatic processes in vivo. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Application In Synthesis of 1H-Benzo[d][1,2,3]triazol-1-amine).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Application In Synthesis of 1H-Benzo[d][1,2,3]triazol-1-amine

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Xie, Jiarong et al. published their research in Drug Metabolism & Disposition in 2019 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Both the triazoles and their derivatives have significant biological properties including antimicrobial, antiviral, antitubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory, and antidepressant activities.Reference of 1614-12-6

Evaluation of carbazeran 4-oxidation and O6-benzylguanine 8-oxidation as catalytic markers of human aldehyde oxidase: impact of cytosolic contamination of liver microsomes was written by Xie, Jiarong;Saburulla, Nur Fazilah;Chen, Shiyan;Wong, Siew Ying;Yap, Ze Ping;Zhang, Linghua Harris;Lau, Aik Jiang. And the article was included in Drug Metabolism & Disposition in 2019.Reference of 1614-12-6 This article mentions the following:

We investigated contribution of microsomal CYP450, cytosolic AOX-1 to carbazeran 4-oxidation, O6-benzylguanine 8-oxidation in human liver microsomal, cytosolic, S9 fractions. Incubations containing carbazeran and human liver microsomes with or without exogenously added NADPH yielded comparable levels of 4-oxo-carbazeran. O6-Benzylguanine 8-oxidation occurred in microsomal incubations, and extent was increased by NADPH. Human recombinant CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5 did not catalyze carbazeran 4-oxidation, whereas CYP1A2 was active in O6-benzylguanine 8-oxidation 1-1-Aminobenzotriazole, a pan-cytochrome P 450 inhibitor, decreased O6-benzylguanine 8-oxidation, but not carbazeran 4-oxidation, in microsomal incubations, whereas 1-aminobenzotriazole and furafylline did not inhibit carbazeran 4-oxidation or O6-benzylguanine 8-oxidation in human liver S9 fraction. Carbazeran 4-oxidation in incubations containing human liver microsomes was attributed to microsomal preparations contaminated with AOX-1, as suggested by liver microsomal experiments indicating decrease in carbazeran 4-oxidation by an AOX-1 inhibitor (hydralazine), and to detection of AOX-1 protein. Cytosolic contamination of liver microsomes was further demonstrated by formation of dehydroepiandrosterone sulfate in liver microsomal incubations containing dehydroepiandrosterone. Carbazeran 4-oxidation, O6-benzylguanine 8-oxidation are enzyme-selective catalytic markers of AOX-1, as shown in S9 fraction expressing cytochrome P 450 and AOX-1. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Reference of 1614-12-6).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Both the triazoles and their derivatives have significant biological properties including antimicrobial, antiviral, antitubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory, and antidepressant activities.Reference of 1614-12-6

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Kowalski, John P. et al. published their research in Journal of Medicinal Chemistry in 2020 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Many triazoles are versatile, biologically active compounds commonly used as fungicides and plant retardants.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Reference of 1614-12-6

Design and Characterization of the First Selective and Potent Mechanism-Based Inhibitor of Cytochrome P450 4Z1 was written by Kowalski, John P.;McDonald, Matthew G.;Pelletier, Robert D.;Hanenberg, Helmut;Wiek, Constanze;Rettie, Allan E.. And the article was included in Journal of Medicinal Chemistry in 2020.Reference of 1614-12-6 This article mentions the following:

Mammary-tissue-restricted cytochrome P 450 4Z1 (CYP4Z1) has garnered interest for its potential role in breast cancer progression. CYP4Z1-dependent metabolism of arachidonic acid preferentially generates 14,15-epoxyeicosatrienoic acid (14,15-EET), a metabolite known to influence cellular proliferation, migration, and angiogenesis. In this study, we developed time-dependent inhibitors of CYP4Z1 designed as fatty acid mimetics linked to the bioactivatable pharmacophore, 1-aminobenzotriazole (ABT). The most potent analog, 8-[(1H-benzotriazol-1-yl)amino]octanoic acid (7), showed a 60-fold lower shifted-half-maximal inhibitory concentration (IC50) for CYP4Z1 compared to ABT, efficient mechanism-based inactivation of the enzyme evidenced by a KI = 2.2μM and a kinact = 0.15 min-1, and a partition ratio of 14. Furthermore, 7 exhibited low off-target inhibition of other CYP isoenzymes. Finally, low micromolar concentrations of 7 inhibited 14,15-EET production in T47D breast cancer cells transfected with CYP4Z1. This first-generation, selective mechanism-based inhibitor (MBI) will be a useful mol. tool to probe the biochem. role of CYP4Z1 and its association with breast cancer. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Reference of 1614-12-6).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Many triazoles are versatile, biologically active compounds commonly used as fungicides and plant retardants.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Reference of 1614-12-6

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Miyakawa, Kazuhisa et al. published their research in Journal of Pharmacology and Experimental Therapeutics in 2015 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeRecommanded Product: 1H-Benzo[d][1,2,3]triazol-1-amine

A cytochrome P450-independent mechanism of acetaminophen-induced injury in cultured mouse hepatocytes was written by Miyakawa, Kazuhisa;Albee, Ryan;Letzig, Lynda G.;Lehner, Andreas F.;Scott, Michael A.;Buchweitz, John P.;James, Laura P.;Ganey, Patricia E.;Roth, Robert A.. And the article was included in Journal of Pharmacology and Experimental Therapeutics in 2015.Recommanded Product: 1H-Benzo[d][1,2,3]triazol-1-amine This article mentions the following:

Mouse hepatic parenchymal cells (HPCs) have become the most frequently used in vitro model to study mechanisms of acetaminophen (APAP)-induced hepatotoxicity. It is universally accepted that APAP hepatocellular injury requires bioactivation by cytochromes P 450 (P450s), but this remains unproven in primary mouse HPCs in vitro, especially over the wide range of concentrations that have been employed in published reports. The aim of this work was to test the hypothesis that APAP-induced hepatocellular death in vitro depends solely on P450s. We evaluated APAP cytotoxicity and APAP-protein adducts (a biomarker of metabolic bioactivation by P 450) using primary mouse HPCs in the presence and absence of a broad-spectrum inhibitor of P450s, 1-aminobenzotriazole (1-ABT). 1-ABT abolished formation of APAP-protein adducts at all concentrations of APAP (0-14 mM), but eliminated cytotoxicity only at small concentrations (≤5 mM), indicating the presence of a P 450-independent mechanism at larger APAP concentrations P 450-independent cell death was delayed in onset relative to toxicity observed at smaller concentrations p-Aminophenol was detected in primary mouse HPCs exposed to large concentrations of APAP, and a deacetylase inhibitor [bis (4-nitrophenyl) phosphate (BNPP)] significantly reduced cytotoxicity. In conclusion, APAP hepatocellular injury in vitro occurs by at least two mechanisms, a P 450-dependent mechanism that operates at concentrations of APAP ≤ 5 mM and a P 450-independent mechanism that predominates at larger concentrations and is slower in onset. P-Aminophenol most likely contributes to the latter mechanism. These findings should be considered in interpreting results from APAP cytotoxicity studies in vitro and in selecting APAP concentrations for use in such studies. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Recommanded Product: 1H-Benzo[d][1,2,3]triazol-1-amine).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeRecommanded Product: 1H-Benzo[d][1,2,3]triazol-1-amine

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Owusu Adjei, Mark et al. published their research in Plant Signaling & Behavior in 2021 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles are important five-member nitrogen heterocycles involved in a wide range of industrial applications such as agrochemicals, corrosion inhibitors, dyes, optical brighteners, as well as biologically active agents. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Related Products of 1614-12-6

Adventitious root primordia formation and development in the stem of Ananas comosus var. bracteatus slip was written by Owusu Adjei, Mark;Xiang, Yixuan;He, Yehua;Zhou, Xuzixin;Mao, Meiqin;Liu, Jiawen;Hu, Hao;Luo, Jiaheng;Zhang, Huiling;Feng, Lijun;Yang, Wei;Li, Xi;Ma, Jun. And the article was included in Plant Signaling & Behavior in 2021.Related Products of 1614-12-6 This article mentions the following:

There are about 4-6 slips on a fruit, and they are good materials for effective regeneration of Ananas comosus var. bracteatus. Adventitious root (AR) induction is essential for the propagation of Ananas comosus var. bracteatus slips. Growth regulator treatment, and culture medium are imperative factors that affect slip growth and rooting. In order to screen the optimal methods for slips rooting and reveal the anat. procedure of slip rooting, this study induced slip rooting by different treatment of growth regulator, culture medium, observed the slip stem structure, AR origination and formation procedure through paraffin sections. The results showed that, slip cuttings treated with 100 mg/L of Aminobenzotriazole (ABT) for 6 h, cultured in river sand: coconut chaff: garden soil 2:2:1 medium is the optimal method for rooting. The proper supplementary of ABT can enhance the soluble sugar content, soluble protein content, polyphenol oxidase (PPO) activity and peroxidase (POD) enzyme activity, which resulted in the improvement of rooting. The slip stem structure is quite different from other monocots, which consists of epidermis, cortex, and stele with vascular tissues distributed in the cortex and stele. The AR primordia originates from the parenchyma cells located on the borderline between the cortex and stele. The vascular tissues in the AR develop and are connected with vascular tissue of the stem before the AR grew out the stem. The number of primary xylem poles in AR is about 30. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Related Products of 1614-12-6).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles are important five-member nitrogen heterocycles involved in a wide range of industrial applications such as agrochemicals, corrosion inhibitors, dyes, optical brighteners, as well as biologically active agents. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Related Products of 1614-12-6

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Wang, Zhican et al. published their research in Drug Metabolism & Disposition in 2017 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeRecommanded Product: 1614-12-6

In vitro metabolism of oprozomib, an oral proteasome inhibitor: role of epoxide hydrolases and cytochrome P450s was written by Wang, Zhican;Fang, Ying;Teague, Juli;Wong, Hansen;Morisseau, Christophe;Hammock, Bruce D.;Rock, Dan A.;Wang, Zhengping. And the article was included in Drug Metabolism & Disposition in 2017.Recommanded Product: 1614-12-6 This article mentions the following:

Oprozomib is an oral proteasome inhibitor currently under investigation in patients with hematol. malignancies or solid tumors. Oprozomib elicits potent pharmacol. actions by forming a covalent bond with the active site N-terminal threonine of the 20S proteasome. Oprozomib has a short half-life across preclin. species and in patients due to systemic clearance via metabolism Potential for drug-drug interactions (DDIs) could alter the exposure of this potent therapeutic; therefore, a thorough investigation of pathways responsible for metabolism is required. In the present study, the major drug-metabolizing enzyme responsible for oprozomib metabolism was identified in vitro. A diol of oprozomib was found to be the predominant metabolite in human hepatocytes, which formed via direct epoxide hydrolysis. Using recombinant epoxide hydrolases (EHs) and selective EH inhibitors in liver microsomes, microsomal EH (mEH) but not soluble EH (sEH) was found to be responsible for oprozomib diol formation. Coincubation with 2-nonylsulfanyl-propionamide, a selective mEH inhibitor, resulted in a significant decrease in oprozomib disappearance (>80%) with concurrent complete blockage of diol formation in human hepatocytes. On the contrary, a selective sEH inhibitor did not affect oprozomib metabolism Pretreatment of hepatocytes with the pan-cytochrome P 450 (P 450) inhibitor 1-aminobenzotriazole resulted in a modest reduction (∼20%) of oprozomib metabolism These findings indicated that mEH plays a predominant role in oprozomib metabolism Further studies may be warranted to determine whether drugs that are mEH inhibitors cause clin. significant DDIs with oprozomib. On the other hand, pharmacokinetics of oprozomib is unlikely to be affected by coadministered P 450 and sEH inhibitors and/or inducers. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Recommanded Product: 1614-12-6).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeRecommanded Product: 1614-12-6

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Fang, Tao et al. published their research in Journal of the American Chemical Society in 2016 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring. 1,2,3-Triazoles are usually prepared following (3+2) cycloaddition protocols. A common technique for unsubstituted triazoles is the Huisgen azide-alkyne 1,3-dipolar cycloaddition: a azide and an alkyne react at high temperature to form a ring. However, the Huisgen strategy produces a mixture of isomers (typically 1,4- and 1,5-disubstituted) when used to produce substituted triazoles.Related Products of 1614-12-6

Mechanism of Glycosylation of Anomeric Sulfonium Ions Glycosylation was written by Fang, Tao;Gu, Yi;Huang, Wei;Boons, Geert-Jan. And the article was included in Journal of the American Chemical Society in 2016.Related Products of 1614-12-6 This article mentions the following:

Anomeric sulfonium ions are attractive glycosyl donors for the stereoselective installation of 1,2-cis glycosides. Although these donors are receiving increasing attention, their mechanism of glycosylation remains controversial. We have investigated the reaction mechanism of glycosylation of a donor modified at C-2 with a (1S)-phenyl-2-(phenylsulfanyl)ethyl chiral auxiliary. Preactivation of this donor results in the formation of a bicyclic β-sulfonium ion that after addition of an alc. undergoes 1,2-cis-glycosylation. To probe the importance of the thiophenyl moiety, analogs were prepared in which this moiety was replaced by an anisoyl or benzyl moiety. Furthermore, the auxiliaries were installed as S- and R-stereoisomers. It was found that the nature of the heteroatom and chirality of the auxiliary greatly influenced the anomeric outcome and only the one containing a thiophenyl moiety and having S-configuration gave consistently α-anomeric products. The sulfonium ions are sufficiently stable at a temperature at which glycosylations proceed indicating that they are viable glycosylation agents. Time-course NMR experiments with the latter donor showed that the initial rates of glycosylations increase with increases in acceptor concentration and the rate curves could be fitted to a second order rate equation. Collectively, these observations support a mechanism by which a sulfonium ion intermediate is formed as a trans-decalin ring system that can undergo glycosylation through a bimol. mechanism. DFT calculations have provided further insight into the reaction path of glycosylation and indicate that initially a hydrogen-bonded complex is formed between sulfonium ion and acceptor that undergoes SN2-like glycosylation to give an α-anomeric product. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Related Products of 1614-12-6).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring. 1,2,3-Triazoles are usually prepared following (3+2) cycloaddition protocols. A common technique for unsubstituted triazoles is the Huisgen azide-alkyne 1,3-dipolar cycloaddition: a azide and an alkyne react at high temperature to form a ring. However, the Huisgen strategy produces a mixture of isomers (typically 1,4- and 1,5-disubstituted) when used to produce substituted triazoles.Related Products of 1614-12-6

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Abramov, Aleksej et al. published their research in Phytochemistry (Elsevier) in 2021 | CAS: 1614-12-6

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Product Details of 1614-12-6

Engineering of benzoxazinoid biosynthesis in Arabidopsis thaliana: Metabolic and physiological challenges was written by Abramov, Aleksej;Hoffmann, Thomas;Stark, Timo D.;Zheng, Linlin;Lenk, Stefan;Hammerl, Richard;Lanzl, Tobias;Dawid, Corinna;Schoen, Chris-Carolin;Schwab, Wilfried;Gierl, Alfons;Frey, Monika. And the article was included in Phytochemistry (Elsevier) in 2021.Product Details of 1614-12-6 This article mentions the following:

Plant specialised metabolites constitute a layer of chem. defense. Classes of the defense compounds are often restricted to a certain taxon of plants, e.g. benzoxazinoids (BX) are characteristically detected in grasses. BXs confer wide-range defense by controlling herbivores and microbial pathogens and are allelopathic compounds In the crops maize, wheat and rye high concentrations of BXs are synthesized at an early developmental stage. By transfer of six Bx-genes (Bx1 to Bx5 and Bx8) it was possible to establish the biosynthesis of 2,4-dihydroxy-1,4-benzoxazin-3-one glucoside (GDIBOA) in a concentration of up to 143 nmol/g dry weight in Arabidopsis thaliana. Our results indicate that inefficient channeling of substrates along the pathway and metabolisation of intermediates in host plants might be a general drawback for transgenic establishment of specialised metabolite biosynthesis pathways. As a consequence, BX levels required for defense are not obtained in Arabidopsis. We could show that indolin-2-one (ION), the first specific intermediate, is phytotoxic and is metabolised by hydroxylation and glycosylation by a wide spectrum of plants. In Arabidopsis, metabolic stress due to the enrichment of ION leads to elevated levels of salicylic acid (SA) and in addition to its intrinsic phytotoxicity, ION affects plant morphol. indirectly via SA. We could show that Bx3 has a crucial role in the evolution of the pathway, first based on its impact on flux into the pathway and, second by C3-hydroxylation of the phytotoxic ION. Thereby BX3 interferes with a supposedly generic detoxification system towards the non-specific intermediate. In the experiment, the researchers used many compounds, for example, 1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6Product Details of 1614-12-6).

1H-Benzo[d][1,2,3]triazol-1-amine (cas: 1614-12-6) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Product Details of 1614-12-6

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics