Application of 16681-70-2, New Advances in Chemical Research in 2021. The appropriate choice of redox mediator can avoid electrode passivation and overpotential, which strongly inhibit the efficient activation of substrates in electrolysis. 16681-70-2, name is 1H-[1,2,3]Triazole-4-carboxylic acid, molecular formula is C3H3N3O2, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, below Introduce a new synthetic route.
lH-l,2,3-triazole-4-carboxylic acid (15.9 mg, 141 muiotaetaomicron) and HATU (53.5 mg, 141 muiotaetaomicron) were dissolved in DMF (2 mL) and stirred for 15 minutes at room temperature. (2R,^R)-4-Amino-2-azido-5-(5′-chloro-2′-fluorobiphenyl-4-yl)pentanoic acid ethyl ester (50 mg, 128 muiotaetaomicron) and DIPEA (67 mu^, 384 muiotaetaomicron) were added, and the mixture was stirred at room temperature for 15 minutes then concentrated in vacuo and the residue was dissolved in EtOH (2 mL). An aqueous solution of IN NaOH (1.3 mL, 1.3 mmol) was added, and the mixture was stirred at room temperature for 30 minutes then concentrated in vacuo and the residue was purified by reverse phase chromatography to yield Compound 1 (45 mg).
Future efforts will undeniably focus on the diversification of the new catalytic transformations. These may comprise an expansion of the substrate scope from aromatic and heteroaromatic compounds to other hydrocarbons. Keep reading other articles of 16681-70-2.
Reference:
Patent; THERAVANCE BIOPHARMA R&D IP, LLC; FLEURY, Melissa; BEAUSOLIEL, Anne-Marie; HUGHES, Adam D.; LONG, Daniel D.; WILTON, Donna A.A.; WO2015/116786; (2015); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics