The important role of 61-82-5

According to the analysis of related databases, 61-82-5, the application of this compound in the production field has become more and more popular.

In the chemical reaction process, reaction time, type of solvent, can easily affect the result of the reaction, thereby determining the yield and properties of the reaction product. An updated downstream synthesis route of 61-82-5 as follows. category: Triazoles

General procedure: To a mixture of dimedone (1 mmol), aldehyde (1 mmol), 2-aminobenzimidazole or 3-amino-1,2,4-triazole (1 mmol)and nano-SiO2 (15 mol %) in the acetonitrile (5 mL) was stirred for appropriate time (Table 2) at 25-30 C. After the completion of the reaction as indicated by TLC, dichloromethane (CH2Cl2) was added to the solidified mixture and the insoluble catalyst was separated by filtration. Evaporation of the solvent from the filtrate and recrystallization of the solid residue from hot ethanol afforded the pure products in high yields.

According to the analysis of related databases, 61-82-5, the application of this compound in the production field has become more and more popular.

Reference:
Article; Mousavi, Mir Rasul; Maghsoodlou, Malek Taher; Journal of the Iranian Chemical Society; vol. 12; 5; (2015); p. 743 – 749;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Sources of common compounds: 61-82-5

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 61-82-5, name is 1H-1,2,4-Triazol-5-amine, A new synthetic method of this compound is introduced below., Safety of 1H-1,2,4-Triazol-5-amine

General procedure: A mixture of 2-aminobenzimidazole or 3-amino-1,2,4-triazole (1.0 mmol), arylaldehyde (1.0 mmol), dimedone (1.0 mmol), and 15 mol % p-TsOH.H2O was stirred in 5 cm3 acetonitrile as solvent at 40-50 C for the appropriate time (Table 3). The progress of the reaction was monitored by TLC. After completion of the reaction, a thick precipitate was obtained. The solid product was filtered off and washed with acetonitrile and subsequently dried in air. The pure product was characterized by conventional spectroscopic methods.

The basis of chemical reaction formula synthesis, the synthesis route is composed of some specific reactions and combined according to certain logical thinking. We look forward to the emergence of more reaction modes in the future.

Reference:
Article; Mousavi, Mir Rasul; Maghsoodlou, Malek Taher; Monatshefte fur Chemie; vol. 145; 12; (2014); p. 1967 – 1973;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Continuously updated synthesis method about 61-82-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 61-82-5.

These common heterocyclic compound, 61-82-5, name is 1H-1,2,4-Triazol-5-amine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route. 61-82-5

A mixture of aldehyde (1 mmol), dimedone (1 mmol), 3-amino-1,2,4-triazole (1 mmol), and [C4(H-DABCO)2][HSO4]4 (16 mg) washeated in an oil bath (90 C) under solvent-free conditions. Aftercompletion of the reaction, as identified by TLC, using n-hexane:EtOAc (7:3) as the eluent, 10 mL of water was added and stirredfor 10 min. The catalyst was dissolved in water and the solid wasfiltered off and washed with warm EtOH, to obtain the pure targetmolecule.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 61-82-5.

Reference:
Article; Safari, Niloufar; Shirini, Farhad; Tajik, Hassan; Journal of Molecular Structure; vol. 1201; (2020);,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Introduction of a new synthetic route about 61-82-5

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 1H-1,2,4-Triazol-5-amine, its application will become more common.

61-82-5,Some common heterocyclic compound, 61-82-5, name is 1H-1,2,4-Triazol-5-amine, molecular formula is C2H4N4, traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: A mixture of 3-amino-1,2,4-triazole or benzimidazole (1.0 mmol), benzaldehyde (1.0 mmol), dimedone (1.0 mmol), and acetonitrile (5 mL) was taken in a round bottom flask and added iodine (10 mol %) and stirred at 80 C for 10 min. After completion of the reaction, as monitored by TLC, the reaction mass was cooled to room temperature and the solid separated was filtered and washed with water and dried at reduced pressure.Data of representative examples

These compound has a wide range of applications. It is believed that with the continuous development of the source of the synthetic route 1H-1,2,4-Triazol-5-amine, its application will become more common.

Reference:
Article; Puligoundla, Ravinder Goud; Karnakanti, Shuklachary; Bantu, Rajashaker; Nagaiah, Kommu; Kondra, Sudhakar Babu; Nagarapu, Lingaiah; Tetrahedron Letters; vol. 54; 20; (2013); p. 2480 – 2483;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

The important role of 61-82-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1H-1,2,4-Triazol-5-amine.

Adding some certain compound to certain chemical reactions, such as: 61-82-5, name is 1H-1,2,4-Triazol-5-amine, can increase the reaction rate and produce products with better performance than those obtained under traditional synthetic methods. Here is a downstream synthesis route of the compound 61-82-5. 61-82-5

General procedure: A mixture of 3-amino-1,2,4-triazole or benzimidazole (1.0 mmol), benzaldehyde (1.0 mmol), dimedone (1.0 mmol), and acetonitrile (5 mL) was taken in a round bottom flask and added iodine (10 mol %) and stirred at 80 C for 10 min. After completion of the reaction, as monitored by TLC, the reaction mass was cooled to room temperature and the solid separated was filtered and washed with water and dried at reduced pressure.Data of representative examples

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 1H-1,2,4-Triazol-5-amine.

Reference:
Article; Puligoundla, Ravinder Goud; Karnakanti, Shuklachary; Bantu, Rajashaker; Nagaiah, Kommu; Kondra, Sudhakar Babu; Nagarapu, Lingaiah; Tetrahedron Letters; vol. 54; 20; (2013); p. 2480 – 2483;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Extended knowledge of 1H-1,2,4-Triazol-5-amine

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

61-82-5, Researchers who often do experiments know that organic synthesis is a process of preparing more complex target molecules from simple raw materials through one or more chemical reactions. Generally, it requires fewer steps, and cheap raw materials. 61-82-5, name is 1H-1,2,4-Triazol-5-amine, A new synthetic method of this compound is introduced below.

A mixture of aldehyde (1 mmol), dimedone (1 mmol), 3-amino-1,2,4-triazole (1 mmol), and [C4(H-DABCO)2][HSO4]4 (16 mg) washeated in an oil bath (90 C) under solvent-free conditions. Aftercompletion of the reaction, as identified by TLC, using n-hexane:EtOAc (7:3) as the eluent, 10 mL of water was added and stirredfor 10 min. The catalyst was dissolved in water and the solid wasfiltered off and washed with warm EtOH, to obtain the pure targetmolecule.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Article; Safari, Niloufar; Shirini, Farhad; Tajik, Hassan; Journal of Molecular Structure; vol. 1201; (2020);,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Share a compound : 61-82-5

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 61-82-5, other downstream synthetic routes, hurry up and to see.

A common compound: 61-82-5, name is 1H-1,2,4-Triazol-5-amine, belongs to Triazoles compound, it can change the direction of chemical reaction, and react with certain compounds to generate new functional products. A new synthetic method of this compound is introduced below. 61-82-5

General procedure: A mixture of aldehyde (1.0 mmol), dimedone (1.0 mmol),1H-1,2,4-triazol-3-amine (1.0 mmol) and nano-AlPO4(SO3H) (0.1 g) was stirred in the acetonitrile (4.0 mL)at 50 C for an appropriate time. After the completion of thereaction as indicated by TLC, dichloromethane was addedto the solidified mixture and the insoluble catalyst was separatedby centrifugation. Evaporation of the solvent from thefiltrate and recrystallization of the solid residue from hot ethanolafforded the pure products in good to excellent yields

In the field of chemistry, the synthetic routes of compounds are constantly being developed and updated. I will also mention this compound in other articles, 61-82-5, other downstream synthetic routes, hurry up and to see.

Reference:
Article; Sharghi, Hashem; Aboonajmi, Jasem; Aberi, Mahdi; Shiri, Pezhman; Journal of the Iranian Chemical Society; vol. 15; 5; (2018); p. 1107 – 1118;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Application of 61-82-5

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 61-82-5.

61-82-5, These common heterocyclic compound, 61-82-5, name is 1H-1,2,4-Triazol-5-amine, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: To a mixture of dimedone (1 mmol), aldehyde (1 mmol), 2-aminobenzimidazole or 3-amino-1,2,4-triazole (1 mmol)and nano-SiO2 (15 mol %) in the acetonitrile (5 mL) was stirred for appropriate time (Table 2) at 25-30 C. After the completion of the reaction as indicated by TLC, dichloromethane (CH2Cl2) was added to the solidified mixture and the insoluble catalyst was separated by filtration. Evaporation of the solvent from the filtrate and recrystallization of the solid residue from hot ethanol afforded the pure products in high yields.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 61-82-5.

Reference:
Article; Mousavi, Mir Rasul; Maghsoodlou, Malek Taher; Journal of the Iranian Chemical Society; vol. 12; 5; (2015); p. 743 – 749;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Extended knowledge of 61-82-5

The synthetic route of 61-82-5 has been constantly updated, and we look forward to future research findings.

61-82-5, A common heterocyclic compound, 61-82-5, name is 1H-1,2,4-Triazol-5-amine, molecular formula is C2H4N4, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, such as complicated route, low yield, poor purity, etc, below Introduce a new synthetic route.

General procedure: To a mixture of dimedone (1 mmol), aldehyde (1 mmol), 2-aminobenzimidazole or 3-amino-1,2,4-triazole (1 mmol)and nano-SiO2 (15 mol %) in the acetonitrile (5 mL) was stirred for appropriate time (Table 2) at 25-30 C. After the completion of the reaction as indicated by TLC, dichloromethane (CH2Cl2) was added to the solidified mixture and the insoluble catalyst was separated by filtration. Evaporation of the solvent from the filtrate and recrystallization of the solid residue from hot ethanol afforded the pure products in high yields.

The synthetic route of 61-82-5 has been constantly updated, and we look forward to future research findings.

Reference:
Article; Mousavi, Mir Rasul; Maghsoodlou, Malek Taher; Journal of the Iranian Chemical Society; vol. 12; 5; (2015); p. 743 – 749;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Sources of common compounds: 1H-1,2,4-Triazol-5-amine

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 61-82-5, name is 1H-1,2,4-Triazol-5-amine, This compound has unique chemical properties. The synthetic route is as follows., 61-82-5

A mixture of aldehyde (1 mmol), dimedone (1 mmol), 3-amino-1,2,4-triazole (1 mmol), and [C4(H-DABCO)2][HSO4]4 (16 mg) washeated in an oil bath (90 C) under solvent-free conditions. Aftercompletion of the reaction, as identified by TLC, using n-hexane:EtOAc (7:3) as the eluent, 10 mL of water was added and stirredfor 10 min. The catalyst was dissolved in water and the solid wasfiltered off and washed with warm EtOH, to obtain the pure targetmolecule.

If you are interested in these compounds, you can also browse my other articles.Thank you for taking the time to read this article. I hope you enjoyed it.

Reference:
Article; Safari, Niloufar; Shirini, Farhad; Tajik, Hassan; Journal of Molecular Structure; vol. 1201; (2020);,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics