Research speed reading in 2021. In classical electrochemical theory, both the electron transfer rate and the adsorption of reactants at the electrode control the electrochemical reaction. 6818-99-1, name is 3-Chloro-1,2,4-triazole belongs to triazoles compound, it is a common compound, a new synthetic route is introduced below. Product Details of 6818-99-1
A suspension of (1S,4aR,6aS,7R,8R,10aR,10bR,12aR,14R,15R)-14-(acetyloxy)- 15-[2-(dimethylamino)-2,3-dimethylbutoxy]-8-[(lR)-1,2-dimethylpropyl]- 1,6,6a,7,8,9,10,10a,10b,11,12,12a-dodecahydro-l^deltaJOa-tetramethyl–oxo-4H-l^a-propano- 2H-phenanthro[1,2-c]pyran-7-carboxylic acid (the compound of Example 130 in International Patent Publication No. WO 2007/127012, herein incorporated by reference in its entirety; 20 mg, 0.03 mmol), 3-chloro-iH-1,2,4-triazole (26.8 mg, 0.259 mmol) and boron trifluoride etherate (75 muL, 0.592 mmol) in dichloroethane (0.7 mL) was blanketed with nitrogen and placed in a 50C oil bath for 24 hours. The mixture was cooled to room temperature, evaporated and the residual oil was separated by reverse phase EtaPLC using a 19 x 150 mm Sunfire Preparative C18 OBD column. The product containing fractions were evaporated and freeze-dried from a mixture of ethanol and benzene to give EXAMPLE 9A as a white solid (3.4 mg), EXAMPLE 9B as a white solid (2.0 mg) and EXAMPLE 9C as a white solid (2.0 mg).EXAMPLE 9A:1H NMR (CD3OD, 600MHz, ppm) delta 0.70 (d, 3H, Me), 0.77 (d, 3H, Me), 0.80 (s, 3H, Me), 0.86-0.98 (multiple Me signals), 1.09 (s, 3H, Me), 1.16 (s, 3H, Me), 1.18 (s, 3H, Me), 1.29-1.48 (m), 1.52-1.57 (m), 1.70 (s, 3H, Me), 1.67-1.86 (m), 1.94-1.99 (m), 2.20-2.26 (m), 2.52 (dd, 1H, H13), 2.54 (dd, 1H, H13), 2.74 (s, NMe2), 2.80 (s, NMe2), 2.82 (s, NMe2), 2.85 (s, NMe2), 3.09 (s, 1H, H7), 3.58 (d, 1H), 3.62 (dd, 1H), 3.68 (d, 1H), 3.79 (d, 1H), 3.85 (d, 1H), 5.60 (br m, 1H, H14), 5.79 (dd, 1H, H5), 5.80 (dd, 1H, H5), 9.04 (br s, 1H, triazole). Mass spectrum: (ESI) m/z = 715.38 (M+H).EXAMPLE 9B:1H NMR (CD3OD, 600MHz, ppm) delta 0.72 (d, 3H, Me), 0.76 (d, 3H, Me), 0.80 (s, 3H, Me), 0.88 (d, 3H, Me), 0.89 (d, 3H, Me), 0.91 (d, 3H, Me), 0.92 (d, 3H, Me), 0.95 (d, 3H, Me), 0.96 (s, 3H, Me), 1.09 (s, 3H, Me), 1.16 (s, 3H, Me), 1.29-1.48 (m), 1.52-1.57 (m), 1.67 (s, 3H, Me), 1.68-1.86 (m), 1.90-1.99 (m), 2.04-2.09 (m), 2.19-2.26 (m), 2.37 (dd, 1H, H13), 2.39 (dd, 1H, H13), 2.66-2.72 (m), 2.71 (s, NMe2), 2.79 (s, NMe2), 2.81 (d, 1H), 3.09 (s, 1H, H7), 3.17 (d, 1H), 3.57 (d, 1H), 3.60-3.64 (m), 3.68 (dd, 1H), 3.72 (d, 1H), 3.80 (d, 1H), 3.86 (d, 1H), 3.99 (d, 1H), 4.20 (d, 1H), 5.72 (m, 1H, H14), 5.77 (dd, 1H, H5), 8.07 (s, 1H, triazole). Mass spectrum: (ESI) m/z = 715.38 (M+H).EXAMPLE 9C:1H NMR (CD3OD, 600MHz, ppm) 50.72 (d, 3H, Me), 0.75 (d, 3H, Me), 0.77 (d, 3H, Me), 0.80 (s, 3H, Me), 0.86-0.96 (multiple Me signals), (s, 3H, Me), 1.03 (s, 3H, Me), 1.05 (s, 3H, Me), 1.09 (s, 3H, Me), 1.17 (s, 3H, Me), 1.19 (s, 3H, Me), 1.28-1.48 (m), 1.50 (s, 3H, Me), 1.52-1.54 (m), 1.69 (s, 3H, Me), 1.60-1.81 (m), 1.90-1.98 (m), 2.20-2.26 (m), 2.46 (dd, 1H, H13), 2.48 (dd, 1H, H13), 2.76 (s, NMe2), 2.80 (s, NMe2), 2.81 (d, 1H), 3.09 (s, 1H, H7), 3.10 (s, 1H, H7), 3.52-3.68 (m), 3.71-3.90 (m), 5.60 (m, 1H, H14), 5.76 (dd, 1H, H5), 8.63 (s, 1H, triazole).Mass spectrum: (ESI) m/z = 715.38 (M+H).
Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data. If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 3-Chloro-1,2,4-triazole, in my other articles.
Reference:
Patent; MERCK SHARP & DOHME CORP.; SCYNEXIS, INC.; GREENLEE, Mark, L.; WILKENING, Robert; APGAR, James; SPERBECK, Donald; WILDONGER, Kenneth, James; MENG, Dongfang; PARKER, Dann, L.; PACOFSKY, Gregory, James; HEASLEY, Brian, Haid; MAMAI, Ahmed; NELSON, Kingsley; WO2010/19204; (2010); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics