Tunable Robust pacs-MOFs: a Platform for Systematic Enhancement of the C2H2 Uptake and C2H2/C2H4 Separation Performance was written by Chen, Di-Ming;Sun, Chun-Xiao;Zhang, Nan-Nan;Si, Huan-Huan;Liu, Chun-Sen;Du, Miao. And the article was included in Inorganic Chemistry in 2018.Name: 4-(4H-1,2,4-Triazol-4-yl)benzoic acid This article mentions the following:
As a modulatable class of porous crystalline materials, metal-organic frameworks (MOFs) have gained intensive research attention in the domain of gas storage and separation In this study, we report on the synthesis and gas adsorption properties of two robust MOFs with the general formula [Co3(μ3-OH)(cpt)3Co3(μ3-OH)(L)3(H2O)9](NO3)4(guests)n [L = 3-amino-1,2,4-triazole (1) and 3,5-diamino-1,2,4-triazole (2); Hcpt = 4-(4-carboxyphenyl)-1,2,4-triazole], which show the same pacs topol. Both MOFs are isostructural to each other and show MIL-88-type frameworks whose pore spaces are partitioned by different functionlized trinuclear 1,2,4-triazolate-based clusters. The similar framework components with different amounts of functional groups make them an ideal platform to permit a systematic gas sorption/separation study to evaluate the effects of distinctive parameters on the C2H2 uptake and separation performance. Because of the presence of addnl. amido groups, the MOF 2 equipped with a datz-based cluster (Hdatz = 3,5-diamino-1,2,4-triazole) shows a much improved C2H2 uptake capacity and separation performance over that of the MOF 1 equipped with atz-based clusters (Hatz = 3-amino-1,2,4-triazole), although the surface area of the MOF 1 is almost twice than that of the MOF 2. Moreover, the high d. of open metal sites, abundant free amido groups, and charged framework give the MOF 2 an excellent C2H2 separation performance, with ideal adsorbed solution theory selectivity values reaching up to 11.5 and 13 for C2H2/C2H4 (1:99) and C2H2/CO2 (50:50) at 298 K and 1 bar, showing potential for use in natural gas purification In the experiment, the researchers used many compounds, for example, 4-(4H-1,2,4-Triazol-4-yl)benzoic acid (cas: 157069-48-2Name: 4-(4H-1,2,4-Triazol-4-yl)benzoic acid).
4-(4H-1,2,4-Triazol-4-yl)benzoic acid (cas: 157069-48-2) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA. Both the triazoles and their derivatives have significant biological properties including antimicrobial, antiviral, antitubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory, and antidepressant activities.Name: 4-(4H-1,2,4-Triazol-4-yl)benzoic acid
Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics