Han, Guiyan published the artcileDiscovery of Novel Fungal Lanosterol 14α-Demethylase (CYP51)/Histone Deacetylase Dual Inhibitors to Treat Azole-Resistant Candidiasis, Application In Synthesis of 86386-77-8, the publication is Journal of Medicinal Chemistry (2020), 63(10), 5341-5359, database is CAplus and MEDLINE.
Invasive fungal infections (particularly candidiasis) are emerging as severe infectious diseases worldwide. Because of serious antifungal drug resistance, therapeutic efficacy of the current treatment for candidiasis is limited and associated with high mortality. However, it is highly challenging to develop novel strategies and effective therapeutic agents to combat drug resistance. Herein, the first generation of lanosterol 14α-demethylase (CYP51)-histone deacetylase (HDAC) dual inhibitors was designed, which exhibited potent antifungal activity against azole-resistant clin. isolates. In particular, compounds 12h(II) and 15j(I) were highly active both in vitro and in vivo to treat azole-resistant candidiasis. Antifungal mechanism studies revealed that they acted by blocking ergosterol biosynthesis and HDAC catalytic activity in fungus, suppressing the function of efflux pump, yeast-to-hypha morphol. transition, and biofilm formation. Therefore, CYP51-HDAC dual inhibitors represent a promising strategy to develop novel antifungal agents against azole-resistant candidiasis.
Journal of Medicinal Chemistry published new progress about 86386-77-8. 86386-77-8 belongs to triazoles, auxiliary class Epoxides,Triazole,Fluoride,Salt,Sulfonic acid,Benzene, name is 1-((2-(2,4-Difluorophenyl)oxiran-2-yl)methyl)-1H-1,2,4-triazole methanesulfonate, and the molecular formula is C12H13F2N3O4S, Application In Synthesis of 86386-77-8.
Referemce:
https://en.wikipedia.org/wiki/1,2,3-Triazole,
Triazoles – an overview | ScienceDirect Topics