Lam, Pak-Lun et al. published their research in Organic & Biomolecular Chemistry in 2022 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Category: triazoles

Incorporation of Fmoc-Dab(Mtt)-OH during solid-phase peptide synthesis: A word of caution was written by Lam, Pak-Lun;Wu, Yue;Wong, Ka-Leung. And the article was included in Organic & Biomolecular Chemistry in 2022.Category: triazoles The following contents are mentioned in the article:

As a com. available and orthogonally protected amino acid building block, Fmoc-Dab(Mtt)-OH (Fmoc = 9-fluoerenylmethoxycarbonyl, Dab = 2,4-diaminobutyric acid, Mtt = p-methyltrityl group) showed abnormally poor coupling efficiency during solid-phase peptide synthesis (SPPS). Herein, we reveal that Fmoc-Dab(Mtt)-OH undergoes rapid lactamization under a series of conditions with various coupling reagents. Although the complete incorporation of Fmoc-Dab(Mtt)-OH can be achieved using a multi-time and preincubation-free protocol with the coupling reagent DEPBT, alternative orthogonally protected building blocks are suggested to be used for avoiding such a costly and tedious procedure. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Category: triazoles).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. However, triazoles are also useful in bioorthogonal chemistry, because the large number of nitrogen atoms causes triazoles to react similar to azides. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Category: triazoles

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics