Maalouf, M. published the artcileStudy of proton conductivity of triazole-based electrolytes for high temperature fuel cell applications, Recommanded Product: 1H-1,2,3-Triazole-4,5-dicarbonitrile, the publication is ECS Transactions (2010), 25(33), 19-25, database is CAplus.
4,5-Dicyano-1H-[1,2,3]-Triazole (DCTz) is a possible water replacement for proton transport in high temperature polymer electrolyte membranes since it exhibits a favorable proton affinity. In this study, some properties of DCTz doped with Trifluoromethanesulfonic Acid (TFMSA) and Heptadecafluorooctanesulfonic acid (C8HO3F17S-HDSA) are investigated. Thermal anal. as well as FTIR data indicated the formation of the salts. After proving to be stable up to 140°C, DCTz, DCTz_TFMSA and DCTz_HDSA salts were formed into membranes in a Polyacrylonitrile (PAN) polymeric binder. Thermogravimetric anal. (TGA) showed that adding the acid increases the stability of the membranes. Electrochem. measurements showed that the acid loading increases the conductivity of these polymeric membranes. Thus, a DCTZ_TFMSA doped PAN membrane has higher conductivity than a DCTZ doped PAN membrane over a temperature range of 20°C to 160°C at low relative humidity (RH). Similarly, increasing the weight % of DCTz_TFMSA in PAN membranes leads to an improved conductivity by an order of magnitude.
ECS Transactions published new progress about 53817-16-6. 53817-16-6 belongs to triazoles, auxiliary class Triazoles, name is 1H-1,2,3-Triazole-4,5-dicarbonitrile, and the molecular formula is C4HN5, Recommanded Product: 1H-1,2,3-Triazole-4,5-dicarbonitrile.
Referemce:
https://en.wikipedia.org/wiki/1,2,3-Triazole,
Triazoles – an overview | ScienceDirect Topics