New downstream synthetic route of 4-Phenyl-1,2,4-triazolidine-3,5-dione

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 15988-11-1.

Each compound has different characteristics, and only by selecting the characteristics of the compound suitable for a specific situation can the compound be applied on a large scale. 15988-11-1, name is 4-Phenyl-1,2,4-triazolidine-3,5-dione, This compound has unique chemical properties. The synthetic route is as follows., Formula: C8H7N3O2

General procedure: General procedure: A mixture of 4-phenylurazole (1, 1 mmol), aryl aldehyde (2, 1.1 mmol) or ketone (5, 1.1 mmol), 1,3-diketone (3, 1 mmol) and FeCl3 (16.2 mg, 10 mol%) in acetonitrile (2.5 mL) was stirred in preheated oil bath at reflux for a specified time as required to complete the reaction (see Table 2 and 3). After complete conversion, as indicated by TLC, the solvent was removed in vacuo and the residue was diluted with water and extracted with ethyl acetate (2¡Á10 mL). The combined organic layers were dried over anhydrous Na2SO4, concentrated in vacuo and purified by column chromatography on silica gel (Merck, 60-120 mesh, ethyl acetate:hexane, 4:6) to afford the pure triazolo[1,2-a]indazoletrione or spirotriazolo[1,2-a]indazoletetraonederivative.

Chemical properties determine the actual use. Each compound has specific chemical properties and uses. We look forward to more synthetic routes in the future to expand reaction routes of 15988-11-1.

Reference:
Article; Subba Reddy; Umadevi; Narasimhulu; Yadav; Chemistry Letters; vol. 42; 8; (2013); p. 927 – 929;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics