Reference of 13273-53-5, New Advances in Chemical Research in 2021. The transformation of simple hydrocarbons into more complex and valuable products via catalytic C–H bond functionalisation has revolutionised modern synthetic chemistry. 13273-53-5, name is 4-Bromo-1-methyl-1H-1,2,3-triazole, molecular formula is C3H4BrN3, its traditional synthetic route has been very mature, but the traditional synthetic route has various shortcomings, below Introduce a new synthetic route.
A solution of 4-bromo-1-methyl-1H-1,2,3-triazole (5 g, 30.87 mmol), tert-butyl prop-2-enoate (11.9 g, 92.85 mmol), palladium acetate (1.1 g, 4.90 mmol), tri-o-tolylphosphane (1.9 g, 6.24 mmol) and triethylamine (4.7 g, 46.45 mmol) in N,N-dimethylformamide (50 mL, 646.09 mmol) was stirred for 12 h at 110 C. The resulting mixture was cooled to room temperature and then diluted with water. The resulting solution was extracted with ethyl acetate, dried with anhydrous sodium sulfate. After filtration, the filtrate was concentrated under vacuum. The residue was purified by flash chromatography on a silica eluted with ethyl acetate/petroleum ether (3/2) to afford tert-butyl (2E)-3-(1-methyl-1H-1,2,3-triazol-4-yl)prop-2-enoate (3.6 g, 17.23 mmol) as a yellow solid. LCMS (ESI) [M+H]+=210
Future efforts will undeniably focus on the diversification of the new catalytic transformations. These may comprise an expansion of the substrate scope from aromatic and heteroaromatic compounds to other hydrocarbons. Keep reading other articles of 13273-53-5.
Reference:
Patent; Genentech, Inc.; Chan, Bryan; Drobnick, Joy; Gazzard, Lewis; Heffron, Timothy; Liang, Jun; Malhotra, Sushant; Mendonca, Rohan; Rajapaksa, Naomi; Stivala, Craig; Tellis, John; Wang, Weiru; Wei, BinQing; Zhou, Aihe; Cartwright, Matthew W.; Lainchbury, Michael; Gancia, Emanuela; Seward, Eileen; Madin, Andrew; Favor, David; Fong, Kin Chiu; Hu, Yonghan; Good, Andrew; US2018/282282; (2018); A1;,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics