Korbel, Gregory A. et al. published their research in Journal of the American Chemical Society in 2001 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Reaction microarrays: a method for rapidly determining the enantiomeric excess of thousands of samples was written by Korbel, Gregory A.;Lalic, Gojko;Shair, Matthew D.. And the article was included in Journal of the American Chemical Society in 2001.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) The following contents are mentioned in the article:

This contribution describes a new method that the authors have named reaction microarrays, in which DNA microarray technol. has been adapted to measure the ee of tens of thousands of samples rapidly and en masse. To evaluate the reaction microarray method, α-amino acids were used because of their fundamental chem. and biol. importance, the availability of structural diversity, and their bifunctional structure. Samples of N-Boc-protected α-amino acids were arrayed and covalently attached to amine-functionalized glass slides. Automated contact printing of nanoliter volumes from 2 mM solutions chemoselectively attached <10-11 moles of amino acid to each spot on a glass slide in a spatially arrayed manner. Uncoupled surface amines were acetylated and en masse Boc-deprotection yielded the free amine. In analogy to DNA microarrays, where relative gene expression levels are measured by a ratio of fluorescent reporters, reaction microarrays utilize two fluorescent probes to measure a ratio of enantiomers. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Fears, Kenan P. et al. published their research in Nature Communications in 2018 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Reference of 156311-83-0

High-performance nanomaterials formed by rigid yet extensible cyclic β-peptide polymers was written by Fears, Kenan P.;Kolel-Veetil, Manoj K.;Barlow, Daniel E.;Bernstein, Noam;So, Christopher R.;Wahl, Kathryn J.;Li, Xianfeng;Kulp, III John L.;Latour, Robert A.;Clark, Thomas D.. And the article was included in Nature Communications in 2018.Reference of 156311-83-0 The following contents are mentioned in the article:

Organisms have evolved biomaterials with an extraordinary convergence of high mech. strength, toughness, and elasticity. In contrast, synthetic materials excel in stiffness or extensibility, and a combination of the two is necessary to exceed the performance of natural biomaterials. We bridge this materials property gap through the side-chain-to-side-chain polymerization of cyclic β-peptide rings. Due to their strong dipole moments, the rings self-assemble into rigid nanorods, stabilized by hydrogen bonds. Displayed amines serve as functionalization sites, or, if protonated, force the polymer to adopt an unfolded conformation. This mol. design enhances the processability and extensibility of the biopolymer. Mol. dynamics simulations predict stick-slip deformations dissipate energy at large strains, thereby, yielding toughness values greater than natural silks. Moreover, the synthesis route can be adapted to alter the dimensions and displayed chemistries of nanomaterials with mech. properties that rival nature. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Reference of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The triazole ring is a relatively stable functional group, and the triazole bond can be used for a variety of applications, such as replacing the phosphate backbone of DNA.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Reference of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Li, Chengxi et al. published their research in ACS Central Science in 2022 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Synthetic Route of C17H27F6N7OP2

Automated Flow Synthesis of Peptide-PNA Conjugates was written by Li, Chengxi;Callahan, Alex J.;Phadke, Kruttika S.;Bellaire, Bryan;Farquhar, Charlotte E.;Zhang, Genwei;Schissel, Carly K.;Mijalis, Alexander J.;Hartrampf, Nina;Loas, Andrei;Verhoeven, David E.;Pentelute, Bradley L.. And the article was included in ACS Central Science in 2022.Synthetic Route of C17H27F6N7OP2 The following contents are mentioned in the article:

Antisense peptide nucleic acids (PNAs) have yet to translate to the clinic because of poor cellular uptake, limited solubility, and rapid elimination. Cell-penetrating peptides (CPPs) covalently attached to PNAs may facilitate clin. development by improving uptake into cells. We report an efficient technol. that utilizes a fully automated fast-flow instrument to manufacture CPP-conjugated PNAs (PPNAs) in a single shot. The machine is rapid, with each amide bond being formed in 10 s. Anti-IVS2-654 PPNA synthesized with this instrument presented threefold activity compared to transfected PNA in a splice-correction assay. We demonstrated the utility of this approach by chem. synthesizing eight anti-SARS-CoV-2 PPNAs in 1 day. A PPNA targeting the 5′ untranslated region of SARS-CoV-2 genomic RNA reduced the viral titer by over 95% in a live virus infection assay (IC50 = 0.8 μM). Our technol. can deliver PPNA candidates to further investigate their potential as antiviral agents. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Synthetic Route of C17H27F6N7OP2).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles exhibit substantial isomerism, depending on the positioning of the nitrogen atoms within the ring. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Synthetic Route of C17H27F6N7OP2

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Albericio, Fernando et al. published their research in Journal of Organic Chemistry in 1998 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Application of 156311-83-0

Use of onium salt-based coupling reagents in peptide synthesis was written by Albericio, Fernando;Bofill, Josep M.;El-Faham, Ayman;Kates, Steven A.. And the article was included in Journal of Organic Chemistry in 1998.Application of 156311-83-0 The following contents are mentioned in the article:

Peptide coupling methods derived from onium salts based on 1-hydroxybenzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole (HOAt) are becoming incorporated in synthetic strategies more frequently than the classical carbodiimide methods. The authors have correlated the reactivity of various onium salts derived from HOXt (X = A, B), with the structure of the reagents in question. It was confirmed that the aza derivatives are more reactive than the parent benzotriazole derivatives in both activation and coupling. Also, the activation step is determined by the structure of the carbon skeleton, where pyrrolidino derivatives appear to be reagents of choice relative to the piperidino analogs or those derived from trialkylamines. Although phosphonium salts are slightly less reactive than the corresponding aminium/uronium salts, the former should be used for the activation of hindered species, since the latter may lead to the formation of guanidino derivatives This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Application of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications.Triazole heterocyclic structures are found to form many weak nonbond interactions with the receptors and enzymes in biological systems.Application of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Subiros-Funosas, Ramon et al. published their research in Organic & Biomolecular Chemistry in 2010 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Related Products of 156311-83-0

PyOxP and PyOxB: the Oxyma-based novel family of phosphonium salts was written by Subiros-Funosas, Ramon;El-Faham, Ayman;Albericio, Fernando. And the article was included in Organic & Biomolecular Chemistry in 2010.Related Products of 156311-83-0 The following contents are mentioned in the article:

Recent studies described the great impact of a non-benzotriazolic family of coupling reagents based on Et 2-cyano-2-(hydroxyimino)acetate, Oxyma, as a powerful coupling methodol. for peptide synthesis. Here we present the synthesis and evaluation of the derived phosphonium salts O-[(1-cyano-2-ethoxy-2-oxoethylidene)amino]-oxytri(pyrrolidin-1-yl) phosphonium hexafluorophosphate (PyOxP) and tetrafluoroborate (PyOxB). Both coupling reagents exhibited higher capacity to suppress racemization in various peptide models and enhanced solubility in DMF and DCM than benzotriazole-based reagents. In addition, the hexafluorophosphate analog PyOxP, combined excellent stability with outstanding efficiency in the assembly of demanding penta and decapeptides that include consecutive Aib residues. Cyclization models revealed the advantages of PyOxP, which rendered a higher percentage of cyclic material than other known potent phosphonium salts. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Related Products of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. The many free lone pairs in triazoles make them useful as coordination compounds, although not typically as haptic ligands. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules.Related Products of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Zheng, Xiu-An et al. published their research in Tetrahedron in 2018 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications. Both the triazoles and their derivatives have significant biological properties including antimicrobial, antiviral, antitubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory, and antidepressant activities.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

An efficient PyAOP-based C4-amination method for direct access of oxidized 5-methyl-2′-deoxycytidine derivatives was written by Zheng, Xiu-An;Huang, Hua-Shan;Kong, Rui;Chen, Wei-Jie;Gong, Shan-Shan;Sun, Qi. And the article was included in Tetrahedron in 2018.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) The following contents are mentioned in the article:

In the past decade, synthetic oxidized 5-methyl-2′-deoxycytidine nucleosides and their derivatives have become essential tools for epigenetic research. The low efficacy of both conventional and newly reported BOP methods on C4-amination of these specific oxidized 5-MedU substrates urged us to systematically investigate how the nature of onium salt-based coupling reagents affects the C4-amination of pyrimidine nucleobases and lead us to the findings that different onium coupling reagents result in the formation of distinctive activation intermediates and PyAOP is much more potent than BOP in both activation and aminolysis steps. Direct amination without the need of ribose protection, ultrafast activation, tolerance to aqueous N-nucleophiles, and excellent yields for diverse oxidized 5MedC derivatives are the advantages of this PyAOP-based C4-amination method. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications. Both the triazoles and their derivatives have significant biological properties including antimicrobial, antiviral, antitubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory, and antidepressant activities.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Teixido, M. et al. published their research in Journal of Peptide Research in 2005 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Related Products of 156311-83-0

Solid-phase synthesis and characterization of N-methyl-rich peptides was written by Teixido, M.;Albericio, F.;Giralt, E.. And the article was included in Journal of Peptide Research in 2005.Related Products of 156311-83-0 The following contents are mentioned in the article:

A library of peptides was synthesized on solid phase. As a result of the high N-methylamino acid content in the peptides, their syntheses were challenging. The coupling of protected N-methylamino acids with N-methylamino acids generally occurs in low yield. PyAOP or PyBOP/HOAt, are the most promising coupling reagents for these couplings. When a peptide contains an acetylated N-methylamino acid at the N-terminal position, loss of Ac-N-methylamino acid occurs during TFA cleavage of the peptide from the resin. Other side reactions resulting from acidic cleavage are described here, including fragmentation between consecutive N-methylamino acids and formation of diketopiperazines (DKPs). The time of cleavage is shown to greatly influence synthetic results. Finally, high-performance liquid chromatog. (HPLC) profiles of N-methyl-rich peptides show multiple peaks because of slow conversion between conformers. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Related Products of 156311-83-0).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. The presence of the three nitrogen atoms in triazole structures afforded opportunities for a plethora of structural modification with the generation of novel therapeutically potential agents, which is different from other heterocyclic compounds.Related Products of 156311-83-0

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Morimoto, Jumpei et al. published their research in Molecular BioSystems in 2015 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Synthesis of a large library of macrocyclic peptides containing multiple and diverse N-alkylated residues was written by Morimoto, Jumpei;Kodadek, Thomas. And the article was included in Molecular BioSystems in 2015.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) The following contents are mentioned in the article:

Large combinatorial libraries of macrocyclic peptides are a useful source of bioactive compounds However, peptides are not generally cell permeable, so there is great interest in the development of methods to create large libraries of modified peptides. In particular, N-alkylation of peptides is known to improve their bioavailability significantly. Incorporation of some level of N-methylated amino acids into peptide libraries has been accomplished with ribosome display or related methods, but the modest efficiency and the inability to employ more diverse N-alkylated amino acids in this type of system argue for the development of synthetic libraries. Here we present optimized procedures for synthesizing macrocyclic peptides containing multiple N-alkylated units and show that this chem. is efficient enough for the creation of high quality combinatorial libraries by split and pool solid-phase synthesis. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications. Many triazoles have antifungal effects: the triazole antifungal drugs include fluconazole, isavuconazole, itraconazole, voriconazole, pramiconazole, ravuconazole, and posaconazole and triazole plant-protection fungicides include epoxiconazole, triadimenol, myclobutanil, propiconazole, prothioconazole, metconazole, cyproconazole, tebuconazole, flusilazole and paclobutrazol.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Wang, Chao et al. published their research in MedChemComm in 2018 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Many triazoles are versatile, biologically active compounds commonly used as fungicides and plant retardants. Triazoles are compounds with a vast spectrum of applications, varying from materials (polymers), agricultural chemicals, pharmaceuticals, photoactive chemicals and dyes.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Design, synthesis, and anticancer activity evaluation of irreversible allosteric inhibitors of the ubiquitin-conjugating enzyme Ube2g2 was written by Wang, Chao;Shi, Genbin;Ji, Xinhua. And the article was included in MedChemComm in 2018.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) The following contents are mentioned in the article:

The RING finger-dependent ubiquitin ligase (E3) gp78, known as the tumor autocrine motility factor receptor, contributes to tumor progression. The protein interacts with its cognate ubiquitin-conjugating enzyme (E2), Ube2g2, via its RING domain and a unique region called G2BR that strongly binds to E2. The binding of G2BR to Ube2g2 allosterically enhances the binding of RING to E2, and the binding of RING triggers the departure of G2BR from E2 also in an allosteric fashion. Targeting these allosteric events, we developed a family of inhibitors that irreversibly block E2-E3 interactions and thereby eliminate the tumorigenic effect of gp78. One among 19 compounds screened with the NCI 60 tumor cell lines exhibited outstanding anticancer activities. At 10 μM, it caused >50% growth inhibition to 40% of the cell lines; at 100 μM, it showed lethiferous activity against most cell lines. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Many triazoles are versatile, biologically active compounds commonly used as fungicides and plant retardants. Triazoles are compounds with a vast spectrum of applications, varying from materials (polymers), agricultural chemicals, pharmaceuticals, photoactive chemicals and dyes.Application In Synthesis of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics

Knerr, Patrick J. et al. published their research in Journal of the American Chemical Society in 2013 | CAS: 156311-83-0

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeQuality Control of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Chemical synthesis of the lantibiotic Lacticin 481 reveals the importance of lanthionine stereochemistry was written by Knerr, Patrick J.;van der Donk, Wilfred A.. And the article was included in Journal of the American Chemical Society in 2013.Quality Control of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) The following contents are mentioned in the article:

Lantibiotics are a family of antibacterial peptide natural products characterized by the post-translational installation of the thioether-containing amino acids lanthionine and methyllanthionine. Until recently, only a single naturally occurring stereochem. configuration for each of these cross-links was known. The discovery of lantibiotics with alternative lanthionine and methyllanthionine stereochem. has prompted an investigation of its importance to biol. activity. Here, solid-supported chem. synthesis enabled the total synthesis of the lantibiotic lacticin 481 and analogs containing cross-links with non-native stereochem. configurations. Biol. evaluation revealed that these alterations abolished the antibacterial activity in all of the analogs, revealing the critical importance of the enzymically installed stereochem. for the biol. activity of lacticin 481. This study involved multiple reactions and reactants, such as ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0Quality Control of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)).

((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V) (cas: 156311-83-0) belongs to triazole derivatives. Triazoles consist of a five-membered ring containing three nitrogen atoms and are biologically active, especially as antifungal, antimicrobial and enzyme inhibitors. Triazole growth retardants such as uniconazole and paclobutrazol have been known to inhibit the biosynthesis of gibberellins by blocking kaurene oxidase, an P450 enzymeQuality Control of ((3H-[1,2,3]Triazolo[4,5-b]pyridin-3-yl)oxy)tri(pyrrolidin-1-yl)phosphonium hexafluorophosphate(V)

Referemce:
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics