An article Fire behavior of flame retarded unsaturated polyester resin with high nitrogen content additives WOS:000525305000004 published article about GLASS-TRANSITION TEMPERATURE; CROSS-LINK DENSITY; AMMONIUM POLYPHOSPHATE; MECHANICAL-PROPERTIES; THERMAL-STABILITY; CHAR FORMATION; COMPOSITES; COMBUSTION; PHOSPHORUS; PHOSPHATE) in [Salasinska, Kamila; Celinski, Maciej; Borucka, Monika; Kozikowski, Pawel] Cent Inst Labour Protect, Dept Chem Biol & Aerosol Hazards, Natl Res Inst, Czerniakowska 16, PL-00701 Warsaw, Poland; [Barczewski, Mateusz] Poznan Univ Tech, Piotrowo 3, PL-61138 Poznan, Poland; [Leszczynski, Michal K.] Polish Acad Sci, Inst Phys Chem, Kasprzaka 44-52, PL-01224 Warsaw, Poland in 2020.0, Cited 56.0. The Name is 1H-1,2,4-Triazol-5-amine. Through research, I have a further understanding and discovery of 61-82-5. Product Details of 61-82-5
The novel flame retarded unsaturated polyester resins have been developed and prepared by introduction of high nitrogen content additives into the polymer matrix in order to verify their effectiveness in the formation of swollen carbonaceous char inhibiting the burning process of the polymer. The intumescent flame retardants (IFRs) based on mixture or metal complex were developed and characterized by particle size distribution, Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), powder X-ray diffraction (XRD), elemental analysis (CHN) and thermogravimetric analysis (TGA). The evaluation of the efficiency of IFRs addition on the flammability and smoke emission of the unsaturated polyester resins (UP) was carried out using the fire hazard (UL-94), limiting oxygen index (LOI) and cone calorimeter (CC) tests, as well as smoke density chamber tests. The volatile compounds evolved during the burning of materials were determined using a steady state tube furnace and a gas chromatograph with mass spectrometer. Furthermore, the prepared materials were subjected to differential scanning calorimetry (DSC), thermogravimetric analysis and water resistance tests. The mechanical properties of the materials were investigated using Shore D hardness and dynamic mechanical thermal analysis (DMA). The structural evaluation of the manufactured materials and samples after the cone calorimetry tests was carried out using scanning electron microscopy (SEM). It was found that the incorporation of new intumescent flame retardants led to the formation of carbonaceous char layers’ inhibiting the decomposition process and limiting the smoke emission. The most promising results were obtained for the resin containing complex designated as ZN3AT, for which the highest reduction in maximum values of heat release rate (419 kW/m(2)) compared to unmodified polymer (792 kW/m(2)) were recorded. Apart from that, the prepared intumescent flame retardants affect the cross-linking process as well as the thermal and mechanical properties of the UP.
Welcome to talk about 61-82-5, If you have any questions, you can contact Salasinska, K; Celinski, M; Barczewski, M; Leszczynski, MK; Borucka, M; Kozikowski, P or send Email.. Product Details of 61-82-5
Reference:
Article; Safari, Niloufar; Shirini, Farhad; Tajik, Hassan; Journal of Molecular Structure; vol. 1201; (2020);,
1,2,3-Triazole – Wikipedia,
Triazoles – an overview | ScienceDirect Topics